

Advanced European Infrastructures for Detectors at Accelerators

WP9.3 "Precise Pixel Detectors"

Igor Rubinskiy

Overview and deliverables

Timeline to commission the AIDA telescope

- PS & SPS schedule, AIDA WP 9.3.1 time slots
- readiness of subtasks

Reminder of the objectives WP9.3

Objectives

- Development of a versatile beam telescope able to characterize detector prototypes, satisfying the demanding requirements in terms of cooling infrastructure, read-out speed and precision
- Development of an off-beam infrastructure for the evaluation of thermo-mechanical properties of Vertex Detector prototypes

 Development of an off-beam infrastructure for the evaluation of thermo-mechanical Deliverable 9.4 months 37

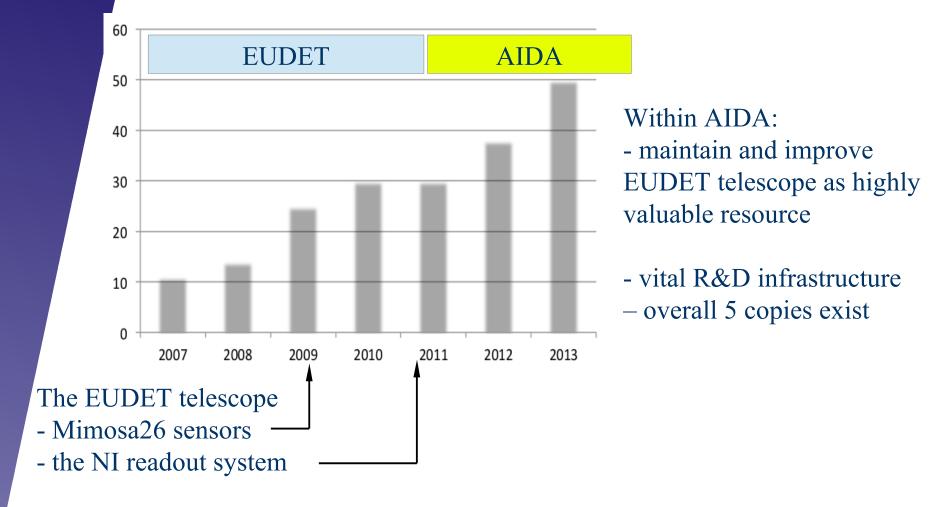
Task 9.3.1 Telescope

- This task builds on the telescope infrastructure developed as part of the EUDET.
- A versatile and modular pixel telescope is to be built using state-of-the-art pixel devices (**Timepix**, **ATLAS FE-I4 and Mimosa**) to meet the requirements of a broad user community. The telescope must provide a precise set of reference measurements and must be capable of LHC-speed response and time-stamping.
- CO2 cooling plant
- Common analysis tools (EUTelescope at el.)
- DCS system

Deliverable 9.1 months 33 done!

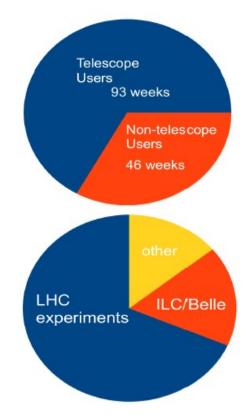
Milestone with design 13

Task 9.3.2 Thermo-mechanical infrastructure


Development of an infrastructure that allows to evaluate the thermo-mechanical performance of fully integrated detector prototypes under a realistic power load.

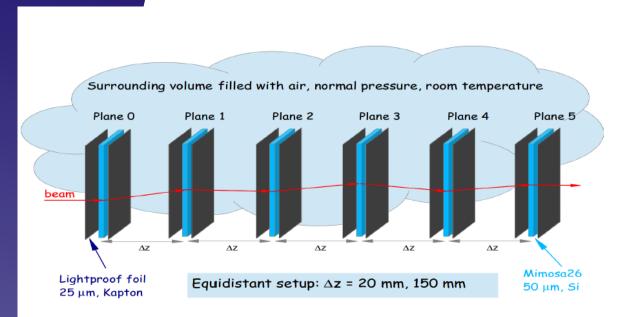
from EUDET into AIDA

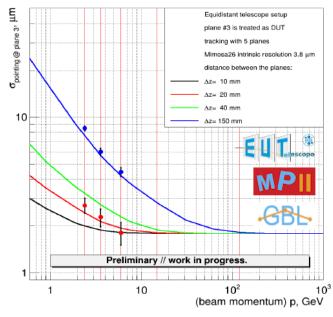
Number of weeks per year when a EUDET telescope (≥ 1) was requested.



EUDET telescopes in 2013 at DESY

Top-bottom view on the EUDET telescope sensor fixtures with a DUT box mounted in between. (Photo by CLICpix group at DESY testbeam)



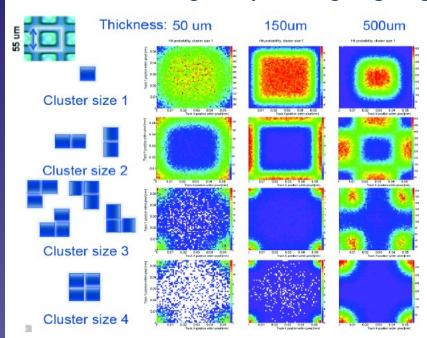

- in January 2013 March 2014
 - 49 Calendar weeks
 - 123 User weeks in total
 - 7100 Testbeam hours
 - 400 Users in total
- DESY-II primary beam at 6.3 GeV
 - high availability time (>99%)
 - secondary e⁺/e⁻ at 1-6 GeV
 - rates 0.1-10 kHz
- beamtests in 1 Tesla magnet
 - new telescope mechanics
 - new DUT cooling system
 - over 20 weeks in B-field

Tracking knowledge consolidated

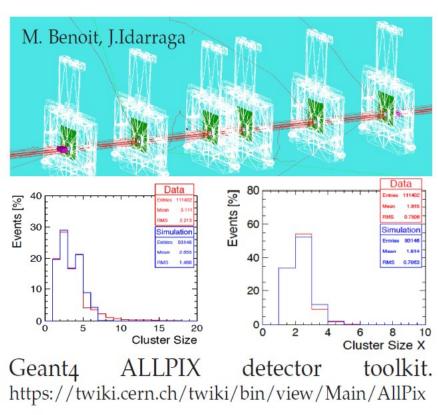
The interplay between the sensor resolution, multiple scattering, distance between telescope planes well understood.

Track pointing resolution at plane 3 (treated as DUT)

Very good understanding of the contributions of multiple scattering, planes positioning, beam energy, and their impact on alignment and tracking.


A lot of maintenance&development work ongoing on the software side.

Timepix, precision studies, simulation

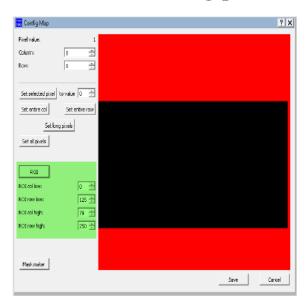

Limepix Filly integrated with EUDAQ, **FLU, EUT**elescope //by CLICpix group

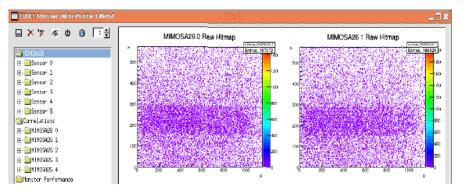
Timepix detector charge sharing study. DESY 5.6 GeV positrons. (M. Benoit, CERN)

High res. charge sharing map done at DESY beam 5.6 GeV.

Genat4 simulation for DUTs in TB

DUT response simulation tools available.





FEI4 as trigger plane

As an LHC-type device with fast readout can provide track timing information.

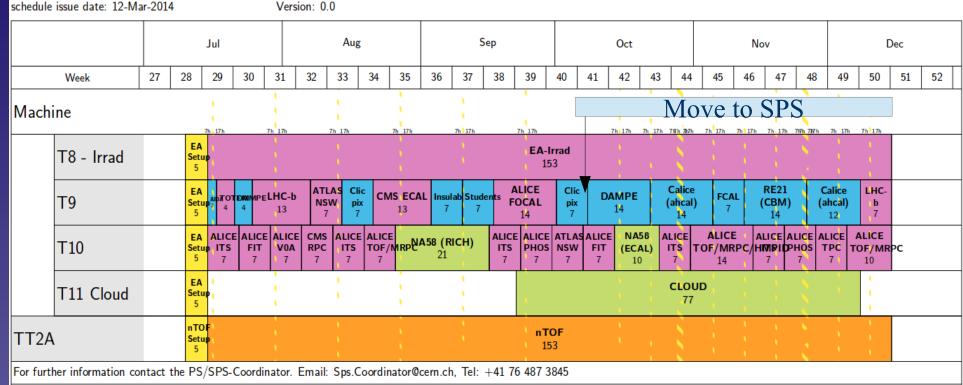
The FEI4 planes provide 14 μ m x70 μ m space resolution and 25 ns time resolution. The EUDET TLU track timing precision $\sigma \sim$ 3 ns. The design value of the AIDA TLU is 0.8 ns.

The FEI4 modules provide a self-trigger signal according to a retunable pixel mask, which is vital for prototypes of few mm^2 . Left-hand plot: implementing a trigger pixel mask, and the Mimosa sensors hitmap in testbeam on the right.

Single FEI4 plane as trigger plane installed at DESY TB.

Time-stamping of tracks requires more work on the firmware/software

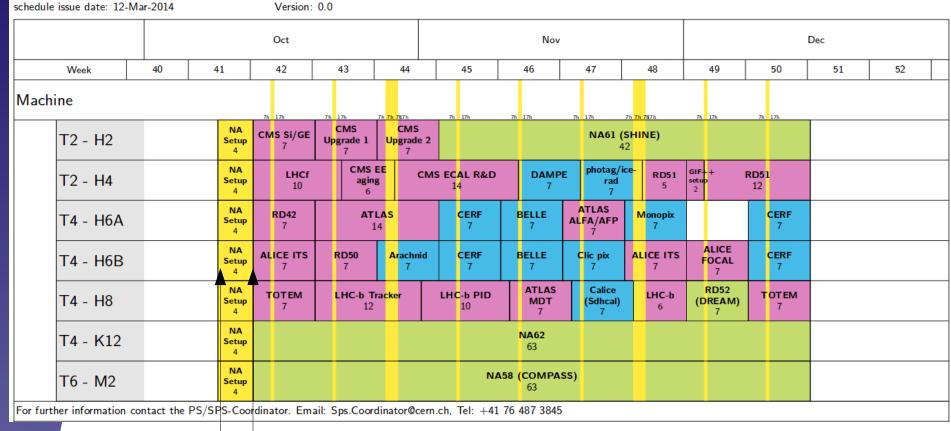
Testbeam schedule CERN PS & SPS 2014


Defines intermediate milestones for the AIDA telescope

- Comissioning in the fall 2014
- Final report end of 2014.

PS user schedule for 2014

Two days with ~7 GeV proton beam to test new EUDAQ 2.0 + AIDA mini-TLU,
Mimosa26 telescope with IPHC readout, FEI4 arm with 1+ planes


Can start installing, last pre-beam tests

Goal of the TB: test of TLU-EUDAQ2 high duty cycle triggering with distinct timestamping per

SPS user schedule for 2014

Parasitic installation at H6B

Final TB:

SALAT arm (3 4xMimosa28) and FEI4 quad plane (1+) with already tested/improved AIDA mini-TLU, EUDAQ 2.0

Setting up

Final AIDA telescope design

Final AIDA telescope:

- WP 9.3.1 Milestone with design (M37)
- key modification is EUDAQ 2.0 + AIDA-TLU
 - equal rights between DAQ systems integrated in the telescope
 - DAQ systems write own datastreams with timestamping/TLU numbering
 - not allowed to block other DAQ system
 - exception: buffer overflow, not able to process data any more
 - to be tested in lab in April/May, testbeam in July CERN PS
- SALAT arm consisting of 3 SALAT planes
 - SALAT plane = 4 Mimosa28 (4x 2x2 cm²) [already beamtested]
- FEI4 quad planes for triggering and timestamping [to be ready by July TB]
 - final beam test in November 2014
- CO2 cooling as general infrastructure
- DCS as generic HV and Climate monitoring system

WP 9.3.2 Thermo-mechanical test setup – complete! Deliverable Report draft.

