

Low Energy Beam line at CERN SPS Task 8.2 Report

Adrian Fabich
On behalf of I. Efthymiopoulos, M. Turner

AIDA 3rd Annual Meeting Vienna University of Technology, 26th March 2014

Existing High Energy Beam Line

A. Fabich

Requirements

- Tasks 8.2: provide the test beam infrastructure at CERN and Frascati
- For testing neutrino detector technologies

Requirements defined in http://cdsweb.cern.ch/record/1430746/files/AIDA-MS27.pdf

- Pions/protons, electrons and muons (both polarities)
- Extend the lower energy range down to 0.5 GeV
 - So far reaching 10 GeV
- Particle rates 1-2 kHz
- Magnetic field at the detector test location
- Including infrastructure like cryogenics

Design study performed by I. Efthymiopoulos and M. Turner looking into the specific case of H8 - but not limited to

Beamline Concept

Install dedicated spectrometer

 Secondary beam in the energy range of 20-80 GeV (depending on particle type and tertiary energy)

26/3/2014

A. Fabich

Engineering Department

Beamline Optimisation

Studying systematically

- · target material and length
- Beamline layout: on-/off-axis

flux estimates of the cases for

- Electron
- Pion/proton
- Muon

Charge sign to be chosen on the spot

Studying the different cases using several simulation tools (turtle, halo, FLUKA)

Layout Options

Four-bends layout

- similar to the one used for the ATLAS&CMS calorimeters in the past
- compatible with detectors installed inside the large Morpurgo magnet
- suffers from large background from the direct secondary beam

Three-bends layout

- reduces the background from the direct secondary beam – essential for v-detectors?
- less straightforward to install detectors in inside the Morpurgo magnet

Pion+proton performance

- Consider background from muons
 - At secondary (high) and tertiary energies

A. Fabich

Electron performance

- Secondary electron beam
- On 2 cm lead target
- Large photon background

Muon performance

 Selecting the "tertiary" muons by setting the first and second half of the VLE spectrometer at cascading energies.

A. Fabich

CERN

Real-case implementation

Summary

- Cases for pion/proton, electron, muon optimised
 - Target options
 - Spectrometer layout report: http://cds.cern.ch/record/1637970
- Beam performance(s) matching the specifications
- Real case implementation in H8 available
- Positioning of v-prototype detectors and the existing/future ATLAS installation to be coordinated

