Delivery of SALAT Status and Plans

Alejandro Pérez IPHC – CNRS Strasbourg

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

HYSICS WITH INTEGRATED CMOS SENSORS AND ILECTRON MACHINES

Outline

- Reminder on SALAT Prototype
- Preliminary results on SALAT Beam-Test @ DESY
- Plans for SALAT delivery
- Summary and outlook

Reminder on SALAT prototype

The Sensors: ULTIMATE (MIMOSA-28)

ULTIMATE main characteristics

- CMOS sensor (0.35μm AMS) high-resistive Epi-layer-15μm Sensor thinned to 50μm (total thickness)
- Column || architecture with in-pixel CDS & amplification
- End-of-column discriminator & binary charge encoding, followed by $\varnothing\mbox{-suppression}$
- 960x928 (columns x rows): pitch 20.7µm (19.9x19.2 mm²)
- $t_{r_0} \leq 200 \mu s$ (~5x10³ frames/s) \Rightarrow suited to > 10⁶ part./cm²/s
- 2 outputs @ 160 MHz
- Power consumption ~150mW/cm²
- Running at room temp. (T = 30C°)

ULTIMATE Performances

- $\sigma_{sp} \gtrsim 3.5 \mu m$
- Efficiency ≤ 99.9%
- Fake rate $\leq 10^{-5}$

ULTIMATE @ STAR: STAR-PXL detector

STAR-TPC

STAR-PXL HALF-BARREL

- 2 layers: 20 ladders (0.37% X₀)
- 200 sensors
- 180x10⁶ pixels
- Air flow cooling: $T \leq 35^{\circ}C$
- $\sigma_{sp} \leq 4\mu m$
- Rad. Load 150kRad + 3x10¹² n.e.q (Full life-time)
- $t_{o.r.} \leq 200 \mu s$
- Currently commissioning with 200 GeV Au – Au collisions

LAT motivations

• Big surface and thin reference planes

LAT motivations

- Big surface and thin reference planes
- Assembly
 - Stretched 50 μ m Mylar foil (X^{Mylar} ~ 3 × X^{Si}₀)

Mechanical & electrical support

LAT motivations

• Big surface and thin reference planes

Assembly

- Stretched 50 μ m Mylar foil (X₀^{Mylar} ~ 3 × X₀^{Si})
- Layout: 2 staggered sensors on each side

LAT motivations

• Big surface and thin reference planes

Assembly

- Stretched 50 μ m Mylar foil (X^{Mylar} ~ 3 × X^{Si}₀)
- Layout: 2 staggered sensors on each side
- UV cured gluing

LAT motivations

• Big surface and thin reference planes

Assembly

- Stretched 50 μ m Mylar foil (X^{Mylar} ~ 3 × X^{Si}₀)
- Layout: 2 staggered sensors on each side
- UV cured gluing
- Sensor bonding

LAT motivations

Big surface and thin reference planes

Assembly

- Stretched 50 μ m Mylar foil (X^{Mylar} ~ 3 × X^{Si}₀)
- Layout: 2 staggered sensors on each side
- UV cured gluing ٠
- Sensor bonding

Basic numbers

- 3.6 M-pixels over 15.3 cm²
- $< 200 \mu s$ integration time
- Insensitive areas ~100µm

cm 6 4.2 cm. ...

Sensing area = $4 \times 3.8 \text{ cm}^2$

LAT motivations

• Big surface and thin reference planes

Assembly

- Stretched 50 μ m Mylar foil (X^{Mylar} ~ 3 × X^{Si}₀)
- Layout: 2 staggered sensors on each side
- UV cured gluing
- Sensor bonding

Basic numbers

- 3.6 M-pixels over 15.3 cm²
- $\leq 200 \mu s$ integration time
- Insensitive areas ~100μm

Production

- 2 SALAT planes fully operational (Mod-3 and 4)
- One crack on sensor of Mod-3 during gluing
- Even if sensor still operational decided to switch it off

Alejandro Pérez, AIDA 3rd Annual meeting, Mar. 27th 2014

Module-3

SALAT PCB, Mechanics and Cooling

PCB design

 Mother (10x16 cm²) and daughter (7x8 cm²) design and production at IPHC micro-tech group

Cooling system

- Chip works with no cooling (relatively high noise)
- Modest cooling required
- Few m/s of ambient air

Mechanical structure

Design and production at IPHC mechanical workshop

SALAT Data Acquisition System

DAQ package for Mimosa-28 beam-test

- DAQ developed for IPHC
- Limited to 2 SALAT planes (8xMi28 sensors)
- Need clock distribution board
 - \Rightarrow prototype version used

DAQ in a nut shell

- Based on NI FlexRIO acquisition board hosted in a PXIe crate
- Acquire 16 links (8 x Mi28 x 2 links) @ 160MB/s
- Continuous readout Data bandwidth 220 MB/s
- No dead-time up to $8 \times Mi28 = 2 \times SALAT$ planes
- Data Storage on a RAID system
- Particles flux up to 10⁶ hits/cm²/s

00210

plane

SALAT beam test @ DESY Preliminary results

February test beam @ DESY: overview

SALAT

Conditions @ DESY

- e⁻ beam with energy from 3.0 up to 6 GeV
- Air cooling

Uniformity study

- Scan SALAT surface with e⁻-beam & telescope
- Study uniformity of sensor performances (efficiency & resolution)
- Studies of planarity assessment (Not reported in this talk)
 - SALAT @ sizeable angles (20, 40°)
 - Ongoing analysis

Proto-Telescope

• Only 2 SALAT planes available

Alejandro Pérez, AIDA 3rd Annual meeting, Mar. 27th 2

Telescope

Uniformity Studies: Set-up

- **Configuration:** 4 reference planes (Telescope) and one SALAT module
 - Homogeneity scan: efficiency and resolution

Uniformity Studies: The Data

42.0 mm

Uniformity Studies: Alignment and Residuals

Sensor 5 of module 4 THR @ 6x noise

Uniformity Studies: SALAT Insensitive Zones

Uniformity Studies: SALAT Insensitive Zones

Uniformity Studies: SALAT Image of beam scan

Alejandro Pérez,

AIDA 3rd Annual meeting, Mar. 27th 2014

Uniformity Studies: Detection Efficiency (%)

23

Uniformity Studies: Residual-U (µm)

46.0 mm

Uniformity Studies: Sensor performances vs THR

- = Estimated Telescope resolution + multiple scattering ~ $(2.2 \pm 0.2)\mu m$
- Same performances as MIMOSA-28 beam-test @ SPS (~100GeV π^+)

Proto-Telescope: Set-up and Alignment

- **Configuration:** 2 SALAT planes \Rightarrow Proto-Telescope
 - Data: different energies (3 6 GeV) with/without collimator

• No real tracking possible \Rightarrow only 2 SALAT planes

Accumulation of 50 events

Can study the correlations of hits in one plane w.r.t. the hits on the other

Alejandro Pérez, AIDA 3rd Annual meeting, Mar. 27th 2014

- No real tracking possible \Rightarrow only 2 SALAT planes
- Can study the correlations of hits in one plane w.r.t. the hits on the other

- No real tracking possible \Rightarrow only 2 SALAT planes
- Can study the correlations of hits in one plane w.r.t. the hits on the other

- No real tracking possible \Rightarrow only 2 SALAT planes
- Can study the correlations of hits in one plane w.r.t. the hits on the other

- No real tracking possible \Rightarrow only 2 SALAT planes
- Can study the correlations of hits in one plane w.r.t. the hits on the other

Plans for SALAT Delivery

SALAT Deliveries: PCBs and Mechanics

Hardware Status

- 2 operational modules and characterized in beam at DESY in February 2014
- Availability for collaborators
 - > 1st plane in August
 - > 2nd plane in September

Final

- Modify daughter board \Rightarrow minimizing insensitive areas
 - improve power distribution and readout orientation
 - easing alignment
- 1st plane in July
- 4th plane in November
- Telescope validation: PICSEL beam test on November (SPS)

⇒ Final delivery

SALAT Delivery: Data Acquisition System

Context of IPHC contribution

- Standalone system driving sensors, acquiring and storing data
 - PXI crate and boards, separated clock distribution board
- No interface with higher system
- Provides TLU interface (EUDET handshake) but not tested

Developments

- Currently limited to 2 LAT planes (8 Mi-28)
- Additional NI-6585 + Flex-RIO boards required One F in PXI
- New software to read 3 LAT planes (12 Mi-28)
- New clock distribution board to synchronize 3 LAT planes (12 Mi-28) and up to 4 LAT planes if required (16 Mi-28)
 - 2 boards needed, VME format (only for power supply)

Availability

- Current system for August 2014
- Upgraded system after November 2014

Clock distribution boards

Summary and outlook

Large Area Telescope prototype produced at IPHC

- Based on very mature sensors (MIMOSA-28) already used in STAR
- Full development of Integration, mechanics and DAQ
- SALAT plane validation @ DESY
 - Ability to readout all the modules synchronously
 - \succ Uniformity of detection efficiency (99.9%) and resolution (~4µm) on full sensitive area
 - Proto-telescope: proof of principle for tracking with low energy electrons

Delivery

- Can deliver in the coming months the SALAT planes as they are
 - > mechanics and DAQ
 - Only 2 SALAT planes
- Can deliver later (by the end of 2014) improved versions of the system
 - > Improved integration to reduce insensitive zones
 - Schematics of mechanic design
 - Improved DAQ to be able to read up to 3 SALAT planes

Back up Slides

Hot pixels map

- Data taken @ IPHC test bench with same configuration as in Test Beam
- Identify hot pixels and mask them for data analysis
- Average fake rates from $\sim 10^{-5}$ to $\sim 10^{-7}$ for Threshold from 5 to 10 times noise

Uniformity Studies: Telescope and DUT alignment

- Use up-stream telescope plane as reference: X and Y positions and rotations at 0
- Iterative approach of telescope planes alignment w.r.t. to reference
- SALAT: independent alignment of 4 SALAT planes w.r.t. the whole telescope

Uniformity Studies: Telescope and DUT alignment

The data @ THR 5x noise

- Scan over the SALAT surface
- 9 regions, several thresholds:5, 6, 8 and 10

Data: Threshold @ 5x noise

The data @ THR 6x noise

- Scan over the SALAT surface
- 9 regions, several thresholds:5, 6, 8 and 10

Data: Threshold @ 6x noise

The data @ THR 8x noise

- Scan over the SALAT surface
- 9 regions, several thresholds:5, 6, 8 and 10

Data: Threshold @ 8x noise

The data @ THR 10x noise

- Scan over the SALAT surface
- 9 regions, several thresholds:5, 6, 8 and 10

Data: Threshold @ 10x noise

Hot pixels map

- Data taken @ IPHC test bench with same configuration as in Test Beam
- Identify hot pixels and mask them for data analysis
- Average fake rates from $\sim 10^{-5}$ to $\sim 10^{-7}$ for Threshold from 5 to 10 times noise

Plane 5

-5.054

0.5798

350

4.912

1.313

350

Efficiency (%) Homogeneity: Threshold @ 6

Uniformity Studies: Efficiency (%)

Uniformity Studies: Efficiency (%)

Uniformity Studies: Cluster multiplicity (DIMENSIONS)

48

Cluster Multiplicity Homogeneity: Threshold @ 6

Uniformity Studies: Cluster multiplicity

T idan	un in in in in it is it	TIMU	THR 8x noise		
		2.86 ± 1.61	2.86 ± 1.62		
0	3.33 ± 1.72 3.44 ± 1.73	3.04 ± 1.64 3.12 ± 1.66	3.05 ± 1.64 3.00 ± 1.66	3.24 ± 1.69 3.29 ± 1.78	
0 0	3.28 ± 1.71	2.97 ± 1.63	2.91 ± 1.65	3.19 ± 1.74	

Uniformity Studies: Cluster multiplicity

The second		THR 10x noise	
	2.40 ± 1.50 2.54 ± 1.52	2.51 ± 1.52 2.45 ± 1.49	
	2.45 ± 1.50	2.40 ± 1.50	
	-		

Uniformity Studies: Residual-U (µm)

Uniformity Studies: Residual-U (µm)

Uniformity Studies: Residual-V (µm)

Uniformity Studies: Residual-V (µm)

Uniformity Studies: Residual-V (µm)

Sensor performances vs Threshold

Alejandro Pérez, AIDA 3rd Annual meeting, Mar. 27th 2014

Uniformity Studies: Sensor performances vs THR

