
Intel® Distribution for
Apache Hadoop* Software

1.0 Executive Summary
This document presents the reference architecture for Intel® Distribution for Apache
Hadoop* software on commodity cluster hardware using the Intel® Xeon® family of
CPU-based motherboards and systems. The intended audiences for this document
are customers and system architects looking for information on implementing Apache
Hadoop clusters within their information technology environment for big data analytics.

First, the reference architecture introduces the high-level components that are included
in the Intel® Distribution for Apache Hadoop* software stack. Next, we discuss typical
Apache Hadoop use cases and introduce the Intel Hadoop taxonomy and then talk about
in detail, extensions and enhancements to the standard Apache Hadoop distribution
that can be found only in the Intel® Distribution. Finally, the reference architecture
describes the optimal configuration to deploy for a given Apache Hadoop solution with
tips on benchmarking and performance tuning.

Reference Architecture
Intel® Xeon® Processors
Intel® Distribution for Apache
Hadoop* Software

2.0 Intel® Distribution for Apache
Hadoop* software Overview
In this section we provide a quick
introduction to Apache Hadoop and then
talk about enhancements and additions
that can only be found in the Intel®
Distribution for Apache Hadoop.

2.1 Apache Hadoop

Apache Hadoop is an Apache project
being built and used by a global
community of contributors, using the
Java* programming language. Yahoo!,
has been the largest contributor to
this project, and uses Apache Hadoop
extensively across its businesses. Other
contributors and users include Facebook,
LinkedIn, eHarmony, and eBay.

The core Apache Hadoop platform includes
a distributed file system called Hadoop
Distributed File System (HDFS), and a
framework called Map/Reduce to execute
jobs in parallel. Additionally, Apache
Hadoop also includes Apache HBase*, a No
SQL like columnar data storage capability
and Apache Hive*, a query processing
engine with a SQL-like syntax.

Intel has created a quality-controlled
distribution of Apache Hadoop, referred
to as Intel® Distribution for Apache
Hadoop* software in the rest of this
document, based on the Apache Hadoop
source base with feature enhancements
and performance improvements that
offers enterprise quality management
software, deployment support, and
consulting services.

2.2 Intel extensions

Intel, in partnership with other platform
vendors, has developed a solution for
big data that includes a feature
enhanced controlled distribution of
Apache Hadoop, with optimizations
for better hardware performance, and
services to streamline deployment and
improve the end user experience.

The Intel® Distribution for Apache
Hadoop* software includes:

• The Intel® Manager for Apache Hadoop*
software to install, configure, monitor, and
administer the Apache Hadoop cluster

• Enhancements to HBase and Hive for
improved real-time query performance
and end user experience

• Resource monitoring capability using
Nagios* and Ganglia* in the Intel® Manager

• Superior security and performance
through better integrated encryption
and compression

• Packaged Apache Hadoop ecosystem
that includes HBase, Hive, and Apache
Pig*, among other tools

This solution provides a foundational
platform for Intel to offer additional
solutions as the Apache Hadoop
ecosystem evolves and expands.

Aside from the Apache Hadoop core
technology (HDFS, MapReduce*, etc.) Intel
has designed additional capabilities to
address specific customer needs for big
data applications such as:

• Optimally installing and configuring the
Apache Hadoop cluster

• Monitoring, reporting, and alerting of the
hardware and software components

• Providing job-level metrics for analyzing
specific workloads deployed in the cluster

• Infrastructure configuration automation

• Extensions to HBase and Hive to
improve real-time transactional
performance and features

• Enhancements to security and access
control with better encryption and
decryption capabilities

Intel® Distribution for Apache Hadoop*
software focuses on efficient integration
of open source–based Apache Hadoop
software distribution with commodity
servers to deliver optimal solutions for a
variety of use cases while minimizing total
cost of ownership.

The supported operating environments
for the Intel® Distribution for Apache
Hadoop* software are Red Hat Enterprise
Linux*, CentOS*, and Oracle Linux*. The
recommended Java virtual machine (JVM)
is the Oracle/Sun JVM. Refer to Table 6
below for more details. The hardware
platforms, the operating system, and
the Java virtual machine make up the
foundation on which the Apache Hadoop
software stack runs.

Table of Contents
1.0 Executive Summary1

2.0 Intel® Distribution for Apache
Hadoop* Software Overview2

 2.1 Apache Hadoop .. 2

 2.2 Intel Extensions... 2

3.0 Intel Hadoop Use Case Summary ...3

4.0 Intel Hadoop Solution Taxonomy ...3

5.0 Intel Hadoop Software
Components...4

 5.1 Intel Manager .. 4

 5.1.1 Enterprise vs
Community Edition 4

 5.1.2 Installation & Configuration 5

 5.1.3 Health & Resource
Monitoring .. 5

 5.1.4 Hadoop Administration 6

 5.2 Intel Hadoop Security Design 6

 5.2.1 Implementing Secure Hadoop.. 6

 5.3 Real Time Transaction Support 7

 5.4 Dynamic Replication Support 8

6.0 Intel Hadoop Hardware
Components ..8

 6.1 Master Nodes .. 8

 6.2 Data/Slave Nodes 8

 6.3 Network Fabric .. 9

 6.3.1 Access Switch or Top of
Rack (ToR) .. 9

 6.3.2 Aggregation Switches 9

7.0 Cluster Hardware Architectures9

 7.1 Rack ... 9

 7.2 Pod ... 9

 7.3 Cluster ... 9

8.0 Planning Considerations 10

 8.1 Data Sizing requirements 10

 8.2 Bandwidth and Performance
Requirements .. 10

9.0 Performance, Tuning &
Benchmarking 10

 9.1 Optimization & Tuning11

 9.2 Configuring and Optimizing the
Software Layer11

 9.3 Configuring and Optimizing the
Hardware Layer12

 9.4 Benchmarking ...13

10.0 Conclusions 13

11.0 References & Contacts 14

12.0 Abbreviations................................. 14

2

3.0 Intel Hadoop Use Case Summary
The table below outlines important use cases that a typical Intel Hadoop cluster can be
used for.

• The Data Storage Framework (HDFS)
is the file system that Apache Hadoop
uses to store data on the cluster
nodes. HDFS is a distributed, scalable,
and portable file system. Intel Hadoop
includes compression and encryption for
enhanced security and performance.

• The Data Processing Framework
(MapReduce) is a massively-parallel
compute framework inspired by Google’s
MapReduce papers. Intel Hadoop includes
dynamic replication capabilities that
wax and wane the number of replicas
depending on workload characteristics.

• The Real Time Query Processing
Framework, which includes HBase,
a scalable distributed columnar data
storage system for large tables, and
Hive data warehouse infrastructure for
ad-hoc query processing. Intel Hadoop
includes extensions to support big tables
across geographically distributed data
centers, as well as feature additions to
improve Hbase and Hive performance.

The components that constitute the
Intel Hadoop solution taxonomy are
described below:

• HBase is a columnar database
management framework that uses the
underlying HDFS framework to provide
random and real time update to data.
It has been designed and developed to
provide the capability to host very large
tables that can support billions of rows
with millions of columns.

• Hive is the query engine framework
for Hadoop that facilitates easy data
summarization, ad-hoc queries, and the
analysis of large datasets stored in HDFS
and HBase.

• Apache ZooKeeper* is a high-
performance coordination service for
distributed applications. It is used as
a centralized service for maintaining
configuration information, naming,
providing distributed synchronization,
and providing group services.

• Apache Sqoop* is a tool designed to
efficiently transfer bulk data between
Apache Hadoop and structured data
stores such as relational databases. It
can be used to import data from external
data stores into Hadoop distributed files
system or related systems like Hive and
HBase. Conversely, Sqoop can be used
to run map/reduce jobs that extract
data from Apache Hadoop and export
to external structured data stores and
enterprise data warehouses.

Table 1. Intel Hadoop Solution Use Cases

Use case Description

Big data analytics Ability to query in real time at the speed of thought
on petabyte scale unstructured and semi structured
data using HBase and Hive.

Data storage Collect and store unstructured and semi-structured
data in a secure, fault-resilient scalable data store that
can be organized and sorted for indexing and analysis.

Batch processing of unstructured data Ability to batch-process (index, analyze, etc.) tens to
hundreds of petabytes of unstructured and semi-
structured data.

Data archive Medium-term (12–36 months) archival of data
from EDW/DBMS to increase the length that data
is retained or to meet data retention policies/
compliance.

Integration with data warehouse Extract, transfer and load data in and out of Hadoop
into separate DBMS for advanced analytics.

Big data visualization Capture, index and visualize unstructured and semi
structured big data in real time

Search and predictive analytics Crawl, extract, index and transform semi
structured and unstructured data for search
and predictive analytics

4.0 Intel Hadoop Solution Taxonomy
In Figure 1, the dark blue layer in the Intel
Hadoop taxonomy is comprised of:

• The Intel® Manager for Apache
Hadoop* software, which is a web-
based management console designed
to install, configure, manage, monitor
and administer the Intel Hadoop
cluster. It uses Nagios and Ganglia to
monitor resources and configure alerts
in the cluster.

Intel® Manager for Apache Hadoop* Software
Deployment, Configuration, Monitoring, Altering, and Security

Sq
oo

p*
D

at
a

Ex
ch

an
ge

Fl
um

e*
Lo

g
Co

lle
ct

or

Zo
oK

ee
pe

r*
Co

or
di

na
tio

n

H
B

as
e*

Co
lu

m
na

r
St

or
ag

ePig*
Scripting

Hive*
SQL-Like Query

Oozie*
Workflow

MapReduce*
Distributed Processing Framework

HDFS*
Hadoop Distributed File System

Figure 1. Intel Hadoop solution taxonomy

3

• Apache Flume* is a distributed, reliable,
and available system for efficiently
collecting, aggregating, and moving large
amounts of log data from many different
sources to a centralized data store.

• Pig is a platform for analyzing large
data sets that consists of a high-level
language for expressing data analysis
programs, coupled with infrastructure
for evaluating these programs. The
salient property of Pig programs is that
their structure is amenable to substantial
parallelization, which in turns enables
them to handle very large data sets.

• Apache Mahout* is a scalable machine
learning library that is intended for
data mining on reasonably large
data sets. The core algorithms for
clustering, classification and batch based
collaborative filtering are implemented
on top of Hadoop using the Map/
Reduce paradigm. Even though the
core algorithms are written for Hadoop
clusters, the libraries also run well on
non-distributed (non Hadoop) single node
systems as well.

• Apache Oozie* is a scalable, reliable,
and extensible system that includes a
workflow scheduler system to manage
Hadoop jobs. Oozie Workflow jobs are
Directed Acyclical Graphs (DAGs) of
actions. Oozie Coordinator jobs are
recurrent Oozie Workflow jobs triggered
by time (frequency) and data availability.

In addition to the above, Apache Hadoop
has gained quick acceptance in the field
of statistical analysis. R is a programming
language with primitives and libraries for
statistical analysis and visualization. R can
be used with Hadoop streaming utility to
directly run as mapper and reducer jobs
or RMR the language that generates Map/
Reduce code that can run on Hadoop can
be used for statistical analysis.

5.0 Intel® Distribution for Apache
Hadoop* Software Enhancements
In this section we introduce in greater
details the software components
and extensions to Intel® Distribution
for Apache Hadoop* software. The
components discussed in the sections
below are enhancements to the Apache
community distribution that will only be
found in the Intel distribution.

5.1 Intel® Manager

The Intel® Manager for Apache Hadoop*
software streamlines configuration,
management, security, administration,
and resource monitoring of Apache
Hadoop clusters. With this powerful,
easy-to-use web based tool, IT can
focus critical resources and expertise on
driving business value from the Hadoop
environment rather than worrying about
the details of cluster management. Intel®
Manager provides:

• Installation and configuration for
Hadoop clusters

• Wizard-driven cluster management

• Proactive cluster health checks

• Monitoring and logging

• Secure authentication and authorization

An enterprise edition of the Intel®
Manager is available in addition to the
community standard edition.

Intel® Manager Enterprise is a subscription
service that comprises of Intel support
and a portfolio of software, including
Intel® Management Services, which
enables the end user to run the Apache
Hadoop environments in a production
environment, cost-effectively and with
repeatable success.

By combining expert support with
software components that deliver deep
visibility into and across Apache Hadoop
clusters, Intel® Manager Enterprise allows
the user an efficient way to precisely
provision and manage cluster resources.

It also allows an IT shop to apply familiar
business metrics, such as measurable
SLAs and chargebacks to their Apache
Hadoop environment so it can be utilized
optimally in the organization.

5.1.1 Enterprise vs. Community Edition

The following table illustrates the
difference between the Enterprise and
Community editions of the Intel Manager.

Table 2. Differences between Intel® Manager Community Edition and Intel®

Manager Enterprise Edition

Hadoop Manager Editions Intel Hadoop Manager
2.0 Community Edition

Intel Hadoop Manager
2.0 Enterprise Edition

Maximum Number of Nodes Supported Unlimited Unlimited

Automated Installation and Deployment √ √

Host-Level Monitoring √ √

Secure Communication Between Server and
Agents

√ √

Service Management √ √

Manage HDFS, MapReduce, HBase, Hue,
Oozie and Zookeeper

√ √

Automated Configuration √ √

Audit Trail √ √

Start/Stop/Restart Services √ √

Add/Restart/Decommission Role Instances √ √

Configuration Versioning and History Not available in 2.0 √

Support for Kerberos √ √

Service Monitoring √ √

Proactive Health Checks √ √

Status and Health Summary √ √

Performance Monitoring √ √

Intelligent Log Management √ √

Events Management and Alerts √ √

Activity Monitoring √ √

Operational Reporting Not available for
Map/Reduce

√

Global Time Control √ √

Support Integration √ √

4

5.1.2 Installation and Configuration

Intel® Manager automatically installs,
configures, and optimizes nodes
across the Apache Hadoop framework
and provides a web console to make
configuration changes as needed.

Intel® Manager locates server nodes
within a specific network and installs
Apache Hadoop software components
on selected server nodes. Using a
wizard-based interface, the Hadoop
administrator can deploy the Hadoop
framework across all nodes, assign roles
to the nodes, and optimize configuration
settings for each role.

Installation using the Intel® Manager
includes the following:

• Scanning server nodes on the
specified network and installing
Hadoop package components

• Defining a flexible network topology,
rack settings, and an automatic replica
placement scheme

• Assigning roles to nodes in the cluster

• Intelligently configuring Hadoop cluster
nodes for optimal performance, using the
node hardware configurations

• Adding and removing nodes from the live
cluster as needed

Intel® Manager streamlines the
configuration and distribution of
changes throughout the cluster.
Cluster configuration includes the
following functionality:

• Providing easy configuration editing for
an individual server node or the whole
cluster with a user-friendly web interface

• Pushing updates to all nodes in the cluster

• Reducing the potential for configuration
update failures with static checks for
parameter interdependencies and other
configuration errors

• Providing configuration recommendations
for optimized performance

5.1.3 Health and Resource Monitoring

The Intel® Manager includes resource
monitoring capability to automate the
configuration of alerts and responses to
unexpected events and failures within
the Intel Hadoop cluster. The health and
resource monitoring provides capabilities
for three primary components of the
cluster environment:

• Monitoring of cluster activities:
The resource monitor component
monitors the cluster, including hardware
components, software components
and Hadoop framework. The resource
monitor will keep historical information
regarding system usage, system
availability, maintenance, and failure
of events. The configurable dashboard
tracks key processing, memory, network,
and storage utilization metrics, including:

• A default view of the most important
health aspects of a cluster: CPU,
memory, network, storage JVM memory,
logs, jobs, and more

• Additional drill-down templates for deep
insight into the health of all or selected
parts of Hadoop cluster components,
such as data nodes, Hadoop Distributed
File System (HDFS*), MapReduce jobs,
and JVM

• A grid of interactive graphs displaying
historical data maintained by the
Ganglia RRDTool storage database
management subsystem

• An overall system map showing the
physical topology of one or more data
centers organized as a grid containing
one or more clusters

• Alerts and events management: The
monitoring component is designed to be
proactive in nature. The resource monitor
component of Intel® Manager will alert
system operations staff about occurrence
of events that deviate from normal
operations, if the administrator has
designated them for notification. Standard

automated responses could include
execution of custom scripts to send e-mail
notification and/or take other corrective
actions before the failure causes an
outage that affects product workloads
and users. Intel® Manager monitors a wide
range of cluster events, including:

• High CPU usage

• Memory usage and swapping

• Network usage

• HDFS capacity

• HBase compaction storm

• Disk capacity

• Disk I/O utilization

• Frequent JVM garbage collection (GC)
MapReduce job failure statistics

System administrators can define high-
level events by combining multiple metrics
and then trigger alerts with specified
thresholds. Alerts are delivered by e-mail
based on configuration and settings.

• Debugging of cluster runtime
operation: The resource monitor
provides the users and administrators
of the Apache Hadoop environment
with the necessary tools for debugging
log files, tracking jobs and tasks,
and monitoring and analyzing job
performance characteristics. Intel®
Manager provides a centralized view
of logs on every node in the cluster.
Administrators can:

• Easily read and search logs. To avoid
creating overly large files, logs are
accumulated and then split and rotated.

• Monitor master nodes via logged alerts
for fatal events, errors, or warnings.

• Monitor the integrity of HDFS and
HBase tables with reported errors.

The resource monitor is flexible enough to
allow integration with existing operations
management frameworks in the customer
IT environment.

5

5.1.4 Hadoop Administration

The Intel® Manager includes an
administration component that provides
the following features:

• Simple User Authentication allows an
administrator to create users and provide
role based access to the Intel® Manager
console to view and administer the
Hadoop cluster.

• LDAP and Active Directory integration
allows the Intel® Manager access
to be integrated with an existing
authentication infrastructure.

Intel Hadoop also provides fine grained
encryption and decryption support,
which is described under the security
design component.

5.2 Intel Hadoop Security Design

Intel® Manager supports secure
authentication and authorization
using Kerberos and built-in access
control rules, including:

• Authentication between users and the
Apache Hadoop cluster to safeguard
against malicious user impersonation.

• Authentication between Apache
Hadoop cluster nodes to prevent group
membership manipulation by users.

• Permission controls for specific HDFS
files or directories.

• Authentication of users for Hive*
metastore access.

• Authentication between HBase and the
secure HDFS

The security encryption is capable of
integration with an existing Kerberos
server installation. Sqoop and Pig support
security with no additional configuration
being required.

5.2.1 Implementing Secure Hadoop

As outlined in the above section, Intel®
Distribution for Apache Hadoop* software
provides the ability to deploy a Secure
Hadoop solution in more than one level.
Some of the features highlighted are:

• HDFS Encryption/Decryption and
Key Management: Intel® Distribution
provides a mechanism to encrypt
and decrypt files stored in HDFS file
system. The HDFS encryption feature
prevents data from being leaked if an
unauthorized user has access to the disk.
Similarly, the files are protected as they
are being accessed for reads/writes/
appends.

• Fine Grained Access Control: Intel®
Distribution provides fine grained
access control features using Kerberos
and Active Directory or LDAP. Using
Intel Manager, the administrator of the
Hadoop cluster will be able to better
define the roles each user has and what
privileges they have for accessing data
that is on the cluster, or executing jobs
on the cluster.

Authorized User

Name Node

Unauthorized User

datanodedatanodedatanode

? ? ?

X

Figure 2. Encryption and decryption for HDFS

6

In the figure below, three possible
scenarios are shown when a user tries to
access a file that is encrypted.

1. When a user with a correct key tries to
read/write a file the client access APIs
will resolve the key privileges to access
the file and passes the privilege to the
MapReduce framework to provide access
to the JVM processes to process the file.

2. In the second scenario, when a user
with an incorrect key tries to access a
file, the client access APIs prevent his
process from proceeding further with
the map and reduce jobs.

3. When unencrypted text or files are
used then everything works smoothly.

5.3 Real-Time Transaction Support

As outlined in the Hadoop taxonomy
section, HBase and Hive together
provide the framework to develop
transactional applications on the Hadoop
platform by providing random and real
time update capability.

Intel® Distribution includes a more
robust and feature enhanced version
of Apache HBase and Hive that is
targeted for distributed transactional
support. Specifically, the following are
some of the specific Intel® Distribution
feature enhancements:

• Cross site big table support provides
the ability to create a single cross-
site HBase table that spans multiple
HBase clusters that are distributed
geographically across many data centers.
Even though such tables are physically
stored across different clusters, they can
be viewed as a single HBase table from a
client application.

• Customized table replication allows the
administrator to choose replication level
by column for a given table. If certain
columns in a table are expected to be
accessed more frequently than others,
those columns can be set to have a
higher replication level.

1. User with correct key to read/write file

2. User with incorrect key to read/write file

3. User read/write cleartext files

datanode

Name Node

datanode

datanode

!

?

1

2

3

1

1

2

DFS API HDFS* API

Client Access MapReduce*

Map Reduce

Temporary Files
1
3

1

3

1

3

Figure 3. Fine grained access control

7

5.4 Dynamic Replication Support

The default file level replication support
available in the HDFS framework is
statically set at the time of file creation.

Intel® Distribution supports dynamic
replication capability in the framework.
When dynamic replication is turned on via
Intel Manager, the cluster framework will
increase the replication level of that file
whenever it gets “hot.” When the file is no
longer “hot,” the framework will reduce
the replication level to default level.

A number of configurable and tunable
parameters are provided to customize
this feature via the Intel® Manager for a
given installation.

6.0 Intel Hadoop Hardware
Components
The recommended configuration for Intel
Hadoop cluster hardware contains the
following nodes:

• Master Node—One or more physical
nodes (servers) that run the Hadoop
Name node, Jobtracker and Secondary
Name node components.

• Slave Node—Three or more nodes
(servers) that run all the services
required to store blocks of data on the
local hard drives and execute processing
tasks against that data.

• Edge (Gateway) Node—Provides
the interface between the data and
processing capacity available in the
Hadoop cluster and client software that
connect and use the services of Apache
Hadoop.

• Manager Node—Runs the Intel® Manager
and is used to administer the nodes of
the Hadoop cluster.

6.1 Master Nodes

Depending on the size of the Hadoop
cluster, a master node potentially can run
one or more of the three master node
daemons, which are namenode, jobtracker
and secondary namenode. The master
node does not store any data and uses
a lot of physical memory as it maintains
critical data in memory for the functioning
of Hadoop cluster.

Table 3. A recommended

configuration of Master node

CPU Two CPU sockets with six or eight
cores Intel® Xeon® processor E5-
2600 series @ 2.9 Ghz

Memory 48 GB (6X8 GB 1.35v 1333 MHz
DIMMs) or

96 GB (6x16 GB 1.35v 1333 MHz
DIMMs)

Disk 4 x 1 TB SATA drives in RAID 5
configuration

Network 1x dual-port 10 GbE NIC

We recommend a two-socket CPU with six
to eight cores. For smaller clusters with
six to twelve data nodes, we recommend
48 GB, but for larger clusters 96 GB
memory is recommended. We recommend
RAID drives for master nodes to eliminate
single points of failures. For network one
10 Gb network interface card with dual
port is recommended.

6.2 Data/Slave Nodes

The data nodes in a Hadoop cluster store
the data blocks and process information.
Data nodes are rack mountable servers.

Typical commodity rack servers come in
1U or 2U rack heights. They are designed
to deliver the most competitive feature
set, best performance and best value.
Most offer a large storage footprint,
best-in-class I/O capabilities, and
advanced management features. Some
of the more recent classes of commodity
server backplanes can accommodate up
to 24 drives.

Table 4: A recommended

configuration of data node

CPU Two CPU sockets with six or eight
cores Intel® Xeon® processor E5-
2600 series @ 2.9 Ghz

Memory 48 GB (6X8 GB 1.35v 1333 MHz
DIMMs) or

96 GB (6x16 GB 1.35v 1333 MHz
DIMMs)

Disk 10-12, 1-3 TB SATA drives

Network 1x dual port 10 GbE NIC or

1x quad port 1 GbE NIC

We recommend two socket six or eight
core Intel® Xeon® CPUs. For memory,
we recommend 96 GB for higher end
clusters and 48 GB for smaller clusters.
We recommend 10-12 SATA disks
without any RAID configuration for
optimal performance. For network,
we recommend gigabit ethernet cards
for lower end clusters and ten gigabit
ethernet cards for higher end clusters.
We also recommend bonding of interfaces
at the host end and the switch end for
greater bandwidth.

Master
(Job Tracking and

HDFS*/Storage Metadata)

Slave 1
(Data Storage and Processing)

Slave N

Task Tracker ZooKeeper*

HDFS* Client

Avro*

Oozie*

Pig*

Hive*

Task Tracker Task Tracker

Job Tracker

Name Node

Data Node Data Node Data Node

M
ap

Re
du

ce
*

H
D

FS

R720/C2100 R720XD/C2100/C6100/C6105 R720/C2100

Figure 4. Hardware components of Intel Hadoop cluster

8

6.3 Network Fabric

We recommend the usage of best-in-class
gigabit (10 Gigabit) Ethernet switches as
the top-of-rack connectivity to all Hadoop-
related nodes. This reference architecture
is used to support consistency in rapid
deployments through the minimal
differences in the network configuration.

From a reference architecture
perspective, we suggest that at a
minimum three distinct, separate VLANs
be implemented for the network fabric:

• Apache Hadoop Cluster Data LAN—
Connects the compute node NICs
into the fabric used for sharing data
and distributing work tasks among
compute nodes.

• Apache Hadoop Cluster Management
LAN—Connects all the iDRAC/BMCs in
the cluster nodes.

• Apache Hadoop Cluster Edge LAN—
Connects the cluster to the outside world.

6.3.1 Access Switch or Top of Rack (ToR):

The servers connect to ToR switches.
Typically there are two in each rack. The
two ToR switches stack together in the
same rack. This is useful in managing
the two switches as a single unit and
allowing the servers to connect into two
different switches for redundancy. The
ToR switches each have two expansion
slots that can accept a two-port 10G
module or a two-port stacking module.
This architecture recommends one of
each type in the two slots. The 10GbE
module would be used to connect into the
pod-interconnect switches, one port to
each switch, forming a LAG. The stacking
module would stack the switches together.

In multi-rack configurations, each rack
is managed as a separate entity and
ToR switches connect only to the pod-
interconnect. The stacking ports are both
connected to the switch in the same rack,
while both 10GbE interfaces connect

to the pod-interconnect switches. In
this situation the stacking bandwidth is
doubled from stacking all six (6) switches
across three racks together option and
the failure domain is limited to a single
rack rather than all three racks. The
uplinks to the pod-interconnects would
be a single LAG of four 10GbE ports, two
from each switch. Each rack connects
to the pod-interconnect independently,
thereby scaling is easier.

6.3.2 Aggregation Switches

The aggregation switches potentially scale
Apache Hadoop deployments into hundreds
of nodes in multi rack configurations.
Apache Hadoop ToR switches connect to
aggregate switches. The uplink would be
on 10GbE interfaces from the ToR. The
recommended architecture uses Virtual
Link Trunking (VLT)* between the two
aggregation switches.

The stacks in each rack would divide
their links between this pair for switches
to achieve the powerful capability of
active-active forwarding while using
full bandwidth capability, in absence of
any requirement for spanning tree. The
aggregation switches also run layer-3
from the ToR as layer-2 alone is not an
Apache Hadoop requirement. Therefore,
for scaling to large deployments, layer-3
routing is a good option.

7.0 Cluster Hardware Architectures

Typical Hadoop clusters can be classified
into three broad classes to accommodate
for sizing as the Hadoop cluster grows.
From smallest to largest, they are
rack, pod, and cluster. Each has specific
characteristics and sizing considerations
documented in this reference architecture.
The design goal for the Apache Hadoop
environment is to enable the customer,
to scale the environment by adding the
additional capacity as needed, without the
need to replace any existing components.

7.1 Rack

A rack is the smallest size designation for
a Hadoop environment. A rack consists
of all the necessary power, the network
cabling, and the two Ethernet switches
necessary to support 16 to 20 data nodes.
These nodes should utilize their own
power connectivity and space within the
data center, separate from other racks,
and be treated as a fault zone.

7.2 Pod

A pod consists of the administration and
operation infrastructure to support three
racks. Each rack will contain its own top of
rack switches and the top of rack switches
from each rack is connected with a higher
bandwidth network interconnect. A pod
can consist of up to 20 data nodes.

7.3 Cluster

A cluster is a set of two to twelve pods.
It is a set of Hadoop nodes that share the
same Name Node and management tools
for operating the Hadoop environment.

ToR ToR

Apache Hadoop* Node
C2100 2 x 1 GE

~20 Nodes

Rack 1
Figure 5. A single Intel Apache Hadoop
cluster rack

9

8.0 Planning Considerations
Planning and sizing for the right
Apache Hadoop cluster depends on
the following factors:

• Storage capacity: Amount of total
storage, or the growth per year in the
amount of data that will be stored,
will determine the cluster size to start
with. The amount of disk storage per
node is limited by the number and size
of disks that can be included in a node.
Block replication factor, will multiply the
amount of total storage required, by the
replication factor level, as a 90 TB total
raw capacity cluster can in reality only
store 30 TB or less as Apache Hadoop, by
default uses a replication level of three.

• Workload resource consumption: CPU
and memory utilization of the workloads
that will run on the cluster, will also
determine the size and capacity of the
cluster. Compute intensive workloads

may require appropriate number of CPU
cores free (not doing disk and network
I/O) with the right amount of free
physical memory. If the cluster usage is
anticipated to be as a storage cluster,
then the stress on CPU and memory
will be low. If large amounts of data is
expected to be transferred between
nodes during reduce phase, network
fabric can become a bottleneck.

• Transactional type: The software
stack chosen during installation
and configuration will depend on
the transactional type of the
application workload. Real time
applications that require ad-hoc query
and update capabilities will require
HBase and/or Hive over core Hadoop
infrastructure. Data mining and
analytics capabilities will require other
components of the ecosystem to be
configured and made available.

8.1 Data sizing requirements

Sizing existing data that needs to be
stored and estimating the rate of influx
of new data that needs to be captured
and persisted on an ongoing basis is quite
important. In addition to sizing the data
from an application domain perspective,
Apache Hadoop replication of data should
also be factored into the sizing calculation.

Additionally, if dynamic replication feature
of Intel® Distribution is enabled or if the
customized table replication feature of
HBase in Intel® Distribution is enabled,
additional data requirements for these
features should also be accounted for in
the data sizing exercise.

8.2 Bandwidth and Performance
Requirements

Real time applications with millisecond
response time requirements and
continuous analytics workloads that run
on large data sets on Apache Hadoop
will require high bandwidth between the
nodes of the cluster.

Also, a cost over performance benefit
evaluation between using a gigabit versus
10 Gb Ethernet for the network fabric
needs to be performed to choose the right
network fabric.

Data ingestion and extraction, in and
out of a Hadoop cluster will be critical to
most application. Networking interface
bonding can provide much needed
bandwidth reprieve.

9.0 Performance Considerations
The Apache Hadoop system is composed
of a number of components that are
integrated in layers. The performance of
any Apache Hadoop system is based on
optimal tuning of each layer.

Because there are so many variables within
several interdependent parts in each layer,
tuning and optimizing a Hadoop system
can be a challenge and may take some
time. Also, each layer may be controlled by
different IT teams, including developers
and infrastructure teams, making the
coordination of tuning efforts imperative.

S4810S4810

Core

S60S60
Stack

S60S60
Stack

VLT/VRRP L2

L3

10G10G

x1

Node
PEC2100
Node
PEC2100
Node
PEC2100
Node
PEC2100

15–20 Nodes

Rack 1

Node
PEC2100
Node
PEC2100
Node
PEC2100
Node
PEC2100

15–20 Nodes

Rack 3
Figure 6. A multi-rack Intel Apache Hadoop cluster

10

Looking top down, the first tunable
layer is the application layer. Any user
applications developed for the Apache
Hadoop framework will have variables
that can be set to provide the best
performance for that application.

The next layer is the actual Hadoop
framework, which includes its two main
components, MapReduce and the HDFS.
Settings can be customized using the
Intel® Manager.

The third layer is the software layer,
which includes the JVM as well as the C
and C++ programs, where parameters can
be set accordingly.

The fourth layer is the operating system,
and the fifth layer is the hardware
resources. Selection of hardware, such as
CPU, memory, type of network interface
card (NIC), and number and type of hard
drives can greatly affect the performance
of the Apache Hadoop system.

9.1 Optimization and Tuning

This section is relevant to application
users and developers. The Apache
Hadoop framework solves the big data
problem by managing tens to hundreds
of petabytes of data. Processing large
amounts of data involves reading and
writing activities within the Hadoop
system. These activities are very
resource intensive, so it is imperative to
finely tune these activities as much as
possible for best performance.

Reduce disk and network I/O: Disk and
network I/O activities can be reduced by
tuning the memory buffer threshold and
by using compression, which reduces the
bandwidth and CPU needed for processing.

MapReduce—Memory Buffer

• io.sort.factor—This represents the number
of input stream files to be merged at once
during map or reduce tasks. The value
should be sufficiently large (e.g., 100)
rather than the default value of 10.

• io.sort.mb—This is the total size of the
result and its metadata buffer and is
associated with map tasks. The default
value of 100 can be set higher, according
to the HDFS block size, to 200 or 300.

• io.sort.record.percent—This is the
percentage of the total metadata buffer
size. The key-value pair combines the
account information, which is fixed at
16 bytes, with the actual record, and is
represented as a percentage ratio. This
ratio should be adjusted based on the
size of the key-value pair of the particular
job, including the number of records and
record size. Larger records should have
a smaller account information ratio and
smaller records should have a larger
account information ratio.

• mapred.job.shuffle.input.buffer.percent—
Increase the shuffle buffer size to
store large and numerous map output
in memory, while reserving part of the
memory for the framework.

• mapred.inmem.merge.threshold—Avoid
spill frequency by setting the value high
enough, or set to zero (0) to disable it.

• mapred.job.shuffle.merge.percent—
Adjust this value to balance between the
spill frequency and the probability of the
copier thread getting blocked.

• mapred.job.reduce.input.buffer.percent—
Specify a relatively high value rather
than the default (0), which can decrease
disk I/O operations. Reserve enough
memory space for the real reduce phase.

MapReduce—Compression

• mapred.output.compress or mapred.
compress.map.output—Compression can
be enabled (or disabled) to compress
both the intermediate and final output
data sets on HDFS system. These
settings should be set to true.

• mapred.output.compression.codec
or mapred.map.output.compression.
codec—The codec can be configured
using any one of a variety of
compression types such as zlib*,
LZO*, and gzip*. Benchmark results
indicate that LZO and Snappy* are the
most well-balanced and efficient codecs.

Benchmarking tests compared using
no compression to using zlib and LZO
codecs. Although zlib has a higher
compression ratio than LZO (meaning it
saves more I/O bandwidth), it still takes
longer to complete. Tests also found

that zlib overwhelmed the CPUs. Tests
showed that LZO functioned well across
hardware resources, showing a 45
percent performance gain over zlib.

• mapred.output.compression.type—
Each block in the HDFS system contains
several records. Therefore, block-level
compression is always better than
record-level compression.

HDFS System—Block Size and Handlers

• dfs.block.size—By default, the minimum
block file size is 64 MB. To increase
performance and decrease the mapping
time, this number should be increased
to 128 MB or 256 MB. An increase from
128 MB to 256 MB reduced running time
by 7 percent.

MapReduce—Load Balancing

• mapred.reduce.tasks—Generally, the
number of reduce tasks should be smaller
than map tasks in an Apache Hadoop job.

• mapred.reduce.slowstart.completed.
maps—Depending on the job, this value
can be increased or decreased to set the
delay for the reduce tasks, which leaves
resources available for other tasks. Use
a higher value for larger data sets to
increase the delay and smaller values for
smaller data sets to decrease the delay.
For example, if the variable is set to 50
percent, then the reduce tasks will start
after 50 percent of the mapped tasks
have finished.

• mapred.reduce.parallel.copies: This
tracks the number of copies read that
can be executed concurrently. The
default setting is 5. To speed up the
sort workload, specify a value between
16 and 25. Tests show that there is no
benefit to setting the number much
higher than this.

9.2 Configuring and Optimizing the
Software Layer

This section is most relevant to the
IT infrastructure team. Selecting and
configuring the operating system
and application software have major
implications for performance and stability.

11

Configure Java settings: The Apache
Hadoop framework and many of its
applications run on Java. It is extremely
important that the JVM runs as optimally
as possible.

Garbage Collection/Java Virtual Machine

• Use “server” mode to appropriately
manage resources for garbage
collection (GC), especially for Apache
Hadoop processes such as JobTracker
and NameNode.

• Enable the following GC options to
support the Apache Hadoop framework:

• Use parallel GC algorithm

• XX:ParallelGCThreads=8

• XX:+UseConcMarkSweepGC

• Set the parameter java.net.
preferIPv4Stack to True to
reduce overhead.

Configure Hadoop framework settings

Settings for the HDFS system and
MapReduce also need to be configured for
optimal performance.

HDFS System— Block Size and Handlers

• dfs.datanode.max.xcievers—The default
maximum number of threads that can
connect to a data node simultaneously
is 256. If this value is not high enough,
you will receive an I/O exception error.
To prevent this error, increase the
xreceiver number to a higher number,
such as 2,048, before starting the data
node services.

MapReduce—Load Balancing

• mapred.tasktracker.[map/reduce].tasks.
maximum—This setting determines
the right number of task slots on each
TaskTracker. The maximum number
of map and reduce slots will be set in
the range of (cores_per_node)/2 to
2x(cores_per_node). For example, an
Intel® Xeon processor 5500 with eight
cores, dual sockets, and hyper threading
(HT) turned on would require 16 map
slots and eight reduce slots. For an Intel®
Xeon® processor 5600 with 12 cores and
dual sockets, the variable should be set
to 24 map slots and eight reduce slots.

Optimize Linux* operating system
installation

The subsystem in the Linux operating
system can be configured to improve
I/O performance for the Apache
Hadoop system.

File System

• Use ext4 as the local file system on
slave nodes. Although ext2, ext3,
and XFS can be used, benchmarking
studies show significant performance
improvements with ext4. Gains were
over 15 percent when using ext4 over
the default, ext3, and even greater with
other file system types.

• When using the ext4 file system, disable
the recording of the file system access
time, using noatime and nodiratime
options, to improve performance as much
as 10 percent.

• When using the ext4 file system, use
the ordered or write back journal mode
for increased performance. Using journal
mode in other file system types will
actually decrease performance and
should be disabled.

• When using the ext4 file system,
increase the inode size from 256 K
to 4 MB (–T largefile4) to improve
performance by as much as 11 percent.

• Increase the read-ahead buffer size to
improve the performance of sequential
reads of large files. For example,
increasing the size from 256 sectors to
2,048 sectors can save about 8 percent
in running time.

Operating System

• Increase the Linux open-file-descriptor
limit using /etc/security/limits.conf. The
default value of 1,024 is too low for the
Apache Hadoop daemon and may result in
I/O exceptions in the JVM layer. Increase
this value to approximately 64,000.

• If using kernel 2.6.28, increase the epoll
file descriptor limit using /etc/sysctl.conf.
The default value of 128 is too low for
the Apache Hadoop daemon. Increase it
to approximately 4,096.

• Increase nrproc (number of processes)
in /etc/security/limit.conf. The default
value is 90, which is too small to run the
Apache Hadoop daemon and may result
in I/O exception errors like “java.lang.
OutOfMemoryError: unable to create
new native thread.” For the Red Hat*
Enterprise Linux 6 operating system,
edit 90-*.conf under folder etc/security/
limits.d, and set the hard and soft nproc
to unlimited.

9.3 Configuring and Optimizing the
Hardware Layer

This section is most relevant to the IT
infrastructure team. Determining the
configuration of the servers in the cluster
is critically important for providing the
highest performance and reliability of
these machines. Because workloads may
be bound by I/O, memory, or processor
resources, system-level hardware also
may need to be adjusted on a case-by-
case basis.

Enable hardware settings

Optimizing hardware is often a balance
between cost, capacity, and performance.

Processor

• Enabling hyper-threading will benefit
CPU-intensive workloads and does not
impact I/O-intensive workloads. For
example, benchmarking tests show that
HT can run as much as 25 percent more
tasks per minute.

Network

• Enable channel bonding to resolve
network-bound and I/O-intensive
workloads. The channel bonding of two
NIC ports will double the bandwidth and
can improve the sort workload running
time by 30 percent

• Multiple-RX/TX-queue supported. Try to
bind the queue to a different core, which
can spread out the network interrupts
onto different cores.

12

Hard Drive Settings

• Run in Advanced Host Controller
Interface (AHCI) mode with Native
Command Queuing (NCQ) enabled to
improve the I/O performance of multiple,
simultaneous read/write activities.

• For better I/O performance, enable the
hard drive’s write cache.

9.4 Benchmarking

Benchmarking is the quantitative
foundation for measuring the success of
any computer system. Intel developed
the HiBench suite as a comprehensive
set of benchmarks for the Apache
Hadoop framework. The individual
measures represent important Apache
Hadoop applications across a range of
tasks. HiBench includes synthetic micro
benchmarks as well as real-world Apache
Hadoop applications representative of a
wider range of large-scale data analytics
(for example, search indexing and
machine learning).

Not all these benchmarks may be relevant
for your organization. The following
will help you understand what each
benchmark measures, so you can map the
relevant ones to your own Apache Hadoop
environment. HiBench 2.1 is now available
as open source under Apache* License 2.0
at https://github.com/hibench/HiBench-2.1.

10.0 Conclusions
The Intel® Distribution for Apache
Hadoop* software lowers the barrier
to adoption for organizations looking
to use Apache Hadoop in production.
With a customer-centered approach,
Intel® Distribution will allow creation of
rapidly deployable and highly optimized
end-to-end Hadoop solutions running on
commodity hardware. Continuing with
Intel® Distribution, Intel will architect and
develop the software components to
address Hadoop deployment requirements
at an enterprise level.

As Apache Hadoop becomes the de facto
platform for business-critical applications,
the data that is stored in Apache Hadoop
becomes crucial for ensuring business
continuity. Intel Hadoop provides the
right mix of Apache Hadoop components
with enhancements to the Apache
Hadoop ecosystem, to not only provide
a distributed linearly scalable data
warehousing platform but also includes
sufficient features and tools to provide
near real-time ad-hoc query capabilities
using Hbase and Hive.

Most of the popular enterprise-grade big
data applications for extract, transform,
load (ETL) processing and real time
continuous analytics of large unstructured
data over Hadoop have been tested
to work out of the box on the Intel®
Distribution for Apache Hadoop* software.

Lastly, the open, integrated approach to
enterprise-wide systems management
enables the end user to build a
comprehensive big data solution based on
open standards integrated with industry-
leading partners.

Table 5: HiBench, The Details

Intel’s HiBench suite looks at 10 workloads in four categories

Category Workload Introduction

Micro benchmarks Sort • This workload sorts its input data, which is generated using the Apache Hadoop* RandomTextWriter example.

• Representative of real-world MapReduce* jobs that transform data from one format to another.

WordCount • This workload counts the occurrence of each word in the input data, which is generated using Apache Hadoop
RandomTextWriter.

• Representative of real-world MapReduce jobs that extract a small amount of interesting data from a large data set.

TeraSort • A standard benchmark for large-size data sorting that is generated by the TeraGen program.

Enhanced DFSIO • Tests HDFS* system throughput of a Hadoop cluster.

• Computes the aggregated bandwidth by sampling the number of bytes read or written at fixed time intervals in each
map task.

Web search Nutch Indexing • This workload tests the indexing subsystem in Nutch*, a popular Apache* open-source search engine. The crawler
subsystem in Nutch is used to crawl an in-house Wikipedia* search engine. The crawler subsystem in Nutch is used to
crawl an in-house Wikipedia* as workload input.

• This large-scale indexing system is one of the most significant uses of MapReduce (for example, in Google* and
Facebook* platforms).

Page Rank • This workload is an open-source implementation of the page-rank algorithm, a link-analysis algorithm used widely in
web search engines.

Machine learning K-Means
Clustering

• Typical application area of MapReduce for large-scale data mining and machine learning (for example, in Google and
Facebook platforms).

• K-Means is a well-known clustering algorithm.

Bayesian
Classification

• Typical application area of MapReduce for large-scale data mining and machine learning (for example, in Google and
Facebook platforms).

• This workload tests the naive Bayesian (a well-known classification algorithm for knowledge discovery and data
mining) trainer in the Mahout* open-source machine-learning library from Apache.

Analytical query Hive* Join • This workload models complex analytic queries of structured (relational) tables by computing the sum of each group
over a single read-only table.

Hive
Aggregation

• This workload models complex analytic queries of structured (relational) tables by computing both the average and
sum for each group by joining two different tables.

13

11.0 References & Contacts
Intel Big Data Resources:
www.intel.com/bigdata

Download Intel® Distribution for Apache
Hadoop* software at hadoop.intel.com

Contact: +1-855-229-5580 or email
ASIPcustomercare@intel.com

12.0 Abbreviations

Table 6: Abbreviations

Abbreviation Definition Abbreviation Definition

DBMS Database management
system

BMC Baseboard management
controller

EDW Enterprise data warehouse AHCI Advanced Host Controller
Interface

HDFS Hadoop File System NCQ Native Command Queuing

NIC Network interface card GBE Gigabit Ethernet

OS Operating system LZO Lempel-Ziv-Oberhumer, a
lossless data compression
algorithm

ToR Top-of-rack switch/router LAN Local Area Network

 INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE,
TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL’S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR
INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

	 	Intel	may	make	changes	to	specifications	and	product	descriptions	at	any	time,	without	notice.	Designers	must	not	rely	on	the	absence	or	characteristics	of	any	features	or	instructions	
marked	“reserved”	or	“undefined.”	Intel	reserves	these	for	future	definition	and	shall	have	no	responsibility	whatsoever	for	conflicts	or	incompatibilities	arising	from	future	changes	to	
them.	The	information	here	is	subject	to	change	without	notice.	Do	not	finalize	a	design	with	this	information.

	 	The	products	described	in	this	document	may	contain	design	defects	or	errors	known	as	errata	which	may	cause	the	product	to	deviate	from	published	specifications.	Current	
characterized	errata	are	available	on	request.	Contact	your	local	Intel	sales	office	or	your	distributor	to	obtain	the	latest	specifications	and	before	placing	your	product	order.	Copies	
of	documents	which	have	an	order	number	and	are	referenced	in	this	document,	or	other	Intel	literature,	may	be	obtained	by	calling	1-800-548-4725,	or	by	visiting	Intel’s	Web	site	
at	www.intel.com.

	 	Copyright	©	2013	Intel	Corporation.	All	rights	reserved.	Intel,	the	Intel	logo,	Xeon,	and	the	Intel	Xeon	badge	are	trademarks	of	Intel	Corporation	in	the	U.S.	and	other	countries.	
	 *Other	names	and	brands	may	be	claimed	as	the	property	of	others.	 Printed	in	USA	 0213/TC/PRW/PDF	 	Please	Recycle	 328693-001US

www.intel.com/bigdata
hadoop.intel.com
ASIPcustomercare%40intel.com

