DATA ANALYTICS IN THE ATLAS
DISTRIBUTED DATA MANAGEMENT
SYSTEM

Vincent.Garonne@cern.ch

DDM Background
=

] The Distributed Data Management project manages
ATLAS data on the grid

150 Petabytes 160
- . 140 Long Shutdown | (LSI)—
500 million files 120
1000 active users 100
: 80
130 sites 60 - Data taking
+ history 40 \
"
20

0
06/08 06/09 06/10 06/11 06/12 06/13

] The current system is Don Quijote 2 (DQ2) in production
since 2004

1) The next generation system is Rucio (scheduled for 201 4)

Workloads: OLTP & Analytical

Online transaction processing (OLTP) workload
Relational database management system (RDBMS)
Main database: Oracle 11g
Object-Relational Mapper: SQLAIchemy
Rucio supports also MySQL, PostgreSQL, etc.

Analytical workload
RDBMS & Non relational structured storage (NoSQL)
Oracle & Hadoop

NoSQL Technology Selection

MongoDB

Cassandra

Hadoop/HBase

Installation/
Configuration

Download, unpack,
run

Download, unpack,
configure, run

Distribution,
Complex config

Buffered read 256 | 250’000 /sec 180’000/sec 150’000/sec
Random read 256 20’000/sec 20’000/sec 20’000/sec
Relaxed write 256 10°000/sec 19’000 /sec 9’000/sec
Durable Write 256 2'500/sec 9’000 /sec 6'000/sec

Analytics

Limited MapReduce

Hadoop MapReduce

MapReduce, Pig, Hive

Durability support

Full

Full

Full

Native API

Binary JSON

Java

Java

Generic API

None

Thrift

Thrift, REST

12 node cluster located in CERN IT data:

96 CPU cores (Intel Xeon, 2.27GHz, 8/node), 288 GB RAM (24 /node), 24 SATA (1 TB
each, 2/node), 1 GigE network

Technology:

ongoDB Cassandra Hadoop/HBase
Installation/ Domunpock, Downloc:d,)u;yzé(, Distribution,
Configuration run configure, r Complex config
Buffered read 256 | 250°000/sed\ | 180000 /sec 150'000//sec
Random read 256 20’000/sec \ ;AO/OOO/sec 20’000/sec
Relaxed write 256 10’000/sec ><1 9’000 /sec 9’000 /sec
Durable Write 256 2’500 /sec / \‘?’\OOO/sec 6’000 /sec
Analytics Limited Mapkéduce HadoopaMapReduce | MapReduce, Pig, Hive
Durability support Full / Full \ Full
Native API Bin%JSON Java \ Java
Generic API one Thrift Thrift, REST

Hadoop is a framework for distributed data processing (not only a database) with many
components: HDFS (distributed filesystem), MapReduce (distributed processing of large data
sets), HBase (distributed data base for structured storage), Hive(SQL frontend), Pig: data-
flow language for parallel execution, ...

Use Case : Trace Mining

Client interaction with ATLAS DDM generates traces
E.g., downloading a dataset/file from a remote site

Lots of information (25 attributes) time-based and
stored at the file level

E.g., Timestamp, dataset / File, User, Site, Transfer times

Since the start in 2007 almost 7 billion traces have
been collected

Average rate at 300 insertions/s
One month of traces ~80GB

Use Case : Popularity

Popularity system aggregates at various granularities

traces into hourly reports
hourly reports into daily reports

by day, dataset, event type (local download, analysis,
production, ...), sites, user, etc.

Oracle based implementation
Moving to hadoop

Interesting features: schemaless , Hbase, distributed atomic
counters, efc.

Replica Reduction

Popularity is used for data deletion by Victor

If a threshold is
reached, it looks
at all replicas on
the site with no
accesses reported
for a certain time
period

Then, if it is @
secondary
category copy, it
will be sent to the
deletion service

; 2 &,
o, 0, o,
= (277 0000 0000 0000

&
%o

Number of files
Yo,
0o ooooo

K
Cp, Ooo

Q0

1000030
o

O,
4

O,
¥

File number evolution at MWT2_DATADISK acc. to DQ2

OToBeDeleted
Jsecondary

@defaul
@erimary
mnput
=0Q2

Use Case : Accounting & Popularity

Regular reports are created

For computing management, visualization front-ends, etc

Break down usage of ATLAS data contents/Popularity

Historical free-form meta data queries
{site, nbfiles, bytes} := {project=datalO*, datatype=ESD, location=CERN*}

A full accounting run takes about 8 minutes
Pig data pipeline creates MapReduce jobs

7 GB of input data, T00 MB of output data
Pig

periodic snapshot [publish

Automated Replica Creation

Currently popularity is only used in an automated way for
deletion but replication policies definition is a static
process at the moment

ldea: Use the popularity also to make new replicas
automatically for popular datasets, i.e.,

Forecasts about future dataset popularity

Decisions how many datasets to delete and where (i.e., how
much space to free up

Decisions on where to replicate new copies for which
datasets

Ongoing Ph.D student work()
Static/Linear /neural network prediction
Simulation

Use Case : Log File Aggregation

7] Monitoring infrastructure based on Hadoop to

analyse central catalog traffic

-—

write

— Map -reduce
log file

Usage by application (time)

Others
10
Gangarbt

DQ2Clients

anDA

DQ2

] Daily copies of all the ATLAS DDM log files

] 8 months of logs = 3 TB on HDFS

] Python MapReduce jobs to analyse the log files

Conclusion

ATLAS Distributed Data Management uses both SQL and
NoSQL

We see NoSQL complementary to RDBMS, not as a
replacement

DDM Analytic use cases are well covered

Hadoop proved to be the correct choice: Stable —
reliable — fast — easy to work with

Happy to work with interested parties

Many other groups/projects adopting similar solutions
CERN-IT Hadoop testbed in use for ATLAS DDM

Thanks !

http:/ /rucio.cern.ch

