

An Overview of the Experiments Upgrades

RRB 37

October 28, 2013
Sergio Bertolucci
CERN

Assumptions

- Baseline schedule:
 - In depth discussion during the RLIUP workshop (Oct. 29-31, 2013)
- Phase-I upgrades figures and timelines pretty consolidated
- Phase-II figures and timelines still based on LOI and to R&D results
- A guideline for further reflections.

"The Baseline Schedule"

	J	F	М	Α	М	J	J	Α	S	0	N	D
2011		1	2	3	4	5	6	7	8	9	IONS	
2012			1	2	3	4	5	6	7	8	9	
2013	IONS	IONS	LS1 - SPLI	CE CONSOL	IDATION							
2014												
2015	CHECK OUT	DECOM	RECOM	DAMP HP				_		_	70110	
2015	CHECK-OUT	RECOM	RECOM	RAMP-UP	2	3	4	5	6	7	IONS	
2016		DAMP UP	4	2	3	4	5	6	7	8	TONC	
2010		RAMP-UP	1	2	3	4	٥١	Ь	/	δ	IONS	
2017		RAMP-UP	1	2	3	4	5	6	7	8	IONS	
		IVAIN OI	-		31	7	31	O	/	O	10113	
2018	LS2 (LIU U	PGRADE: LI	NAC4, BOO	STER, PS, SF	PS)							
			,	,,,,,,								
2019	RECOM	RECOM	RAMP-UP	1	2	3	4	5	6	7	IONS	
					•							
2020		RAMP-UP	1	2	3	4	5	6	7	8	IONS	
2021		RAMP-UP	1	2	3	4	5	6	7	8	IONS	
2022	HL-LHC UP	GRADE										

Technical stop or shutdown
Proton physics
Ion Physics
Recommissioning
Intensity ramp-up

Presented by Austin in RLIUP on behalf of 4 LHC expts

LHC experiments on same page

	ATLAS		ALICE		CMS		LHCb		
YETS 2016-17 duration	Min needed by LHC		Min needed by LHC		4.5 mo (i.e. 6w more)	Pixel upgrade	Min needed by LHC		
Preferred LS2 start	end 2017	Trigger upgrade	end 2017	ITS,TPC & readout upgrade	end 2018.	HCAL upgrade	end 2018	Readout upgrade	
Required LS2 duration	14 mo	Trigger upgrade μ Small wheels	18 mo	ITS, TPC 4GEM, MFT	14 mo	HCAL upgrade & Phase 2 start.	18 mo	VELO, RICH, Tracking, 40MHz readout.	
Preferred LS3 start	end 2021	Tracker replace- ment ready	3 y after LS2 end		end 2022 < 500fb-1		3 y after LS2 end		
Preferred LS3 duration	27-35 mo		Min needed by LHC		30-35 mo	Tracker, EE and HE repl.	Min needed by LHC		

Computing Model update

- Requested by LHCC
 - Initial draft delivered in September; final version due for LHCC meeting in December
- Goals:
 - Optimise use of resources
 - Reduce operational costs (effort at grid sites, ease of deployment and operation, support and maintenance of grid middleware)
- Evolution of computing models significant improvements that have already been done; areas of work now and anticipated; including several common projects
- Evolution of grid model: use of new technologies
 - Cloud/virtualisation
 - Data federations, intelligent data placement/caching, data popularity service

43

Computing model – 2

- Resource outlook for Run 2 (2014-2017)
 - Higher trigger (data) rates driven be physics needs
 - Based on understanding of likely LHC parameters;
 - foreseen technology evolution (CPU, disk, tape)
 - Experiments work hard to fit within constant budget scenario

Software

- Moore's law only helps us if we can make use of the new multi-core CPUs with specialised accelerators etc. (Vectorisation, GPUs, ...)
 - No longer benefit from simple increases in clock speed
- Ultimately this requires HEP software to be re-engineered to make use of parallelism at all levels
 - Vectors, instruction pipelining, instruction level pipelining, hardware threading, multi-core, multi-socket.
- Need to focus on commonalities:
 - GEANT, ROOT, build up common libraries
- This requires significant effort and investment in the HEP community
 - Concurrency forum already initiated
 - Ideas to strengthen this as a collaboration to provide roadmap and incorporate & credit additional effort

From: Torre Wenaus, CHEP 2013

Data Management Where is LHC in Big Data Terms?

