
Author(s) names – Affiliation

Lecture series title/ lecture title

1

Efficient parallel I/O on
multi-core architectures

Adrien Devresse

CERN IT-SDC-ID

Thematic CERN School of Computing 2014

Author(s) names – Affiliation

Lecture series title/ lecture title

2

How to make I/O bound
application scale with
multi-core ?

→ A server application
→ A job that accesses big number of
files
→ An application that uses intensively
network

What is an IO bound application ?

Author(s) names – Affiliation

Lecture series title/ lecture title

3

Stupid example: Simple server
monothreaded

 // create socket
 socket_desc = socket(AF_INET , SOCK_STREAM , 0);

 // bind the socket
 bind(socket_desc,(struct sockaddr *)&server , sizeof(server));
 listen(socket_desc , 100);

 //accept connection from an incoming client
 while(1){

 // declarations
 client_sock = accept(socket_desc, (struct sockaddr *)&client, &c);

 //Receive a message from client
 while((read_size = recv(client_sock , client_message , 2000 , 0)) > 0{

// Wonderful, we have a client, do some useful work
std::string msg("hello bob");

 write(client_sock, msg.c_str(), msg.size());
 }

 }

Author(s) names – Affiliation

Lecture series title/ lecture title

4

Stupid example: Let's make it
parallel !

int main(int argc, char** argv){

 // creat socket
 socket_desc = socket(AF_INET ,

SOCK_STREAM , 0);

 // bind the socket
 bind(socket_desc, server , sizeof(server));
 listen(socket_desc , 100);

 //accept connection from an incoming client
 while(1){

 // declarations

 client_sock = accept(socket_desc,
 (struct sockaddr *)&client, &c);

 new std::thread(bind(do_work, client_sock));
}

}

void do_work(int socket){

 //Receive a message
 while((read_size =

 recv(client_sock ,
client_message , 2000 , 0)) > 0{

// Wonderful, we have a client
// useful works

 }
}

Author(s) names – Affiliation

Lecture series title/ lecture title

5

Wonderful and easy isn't it ?

Author(s) names – Affiliation

Lecture series title/ lecture title

6

Wonderful and easy isn't it ?

It does NOT scale

Author(s) names – Affiliation

Lecture series title/ lecture title

7

void do_work(int socket){

 //Receive a message
 while((read_size =

 recv(client_sock ,
client_message , 2000 , 0)) > 0{

// Wonderful, we have a client
// useful works

 }
}

→ Blocking IO

→ Your thread will spend most of the time to
wait in I/O

→ Limiting factor : number of threads you
can spawn

Why this does not scale ?

Author(s) names – Affiliation

Lecture series title/ lecture title

8

Solution ?

Use asynchronous I/O and
event based model

Author(s) names – Affiliation

Lecture series title/ lecture title

9

Solution : Event based

Reactor Pattern and NON blocking I/O

1- One event loop for incoming I/O
events

→ Use event monitoring function
→ Select()/ poll() / epoll()/ kqueue()

2- The events are dispatched into tasks

3- Execute tasks in a ThreadPool

4- Send back I/O operations to themain
thread

Author(s) names – Affiliation

Lecture series title/ lecture title

10

Event I/O architecture

IO

Select() /
epoll() /

kqueue()

Is data
ready ?

No

Working Thread

Working Thread

Working Thread

Working Thread

Working Thread

Thread pool

Yes,
 Let read data

Send next I/O operation
 to event loop

Need I/O ?

Author(s) names – Affiliation

Lecture series title/ lecture title

11

Advantages of Reactor pattern

→ No need to spawn one thread per
query

→ Thread pool for task execution
 → Lower memory consumption

→ Keep thread doing active work
→ Maximize processor usage

→ Allow for fine grain scheduling with
requests

Author(s) names – Affiliation

Lecture series title/ lecture title

12

You can use existing solutions

→ Boost Asynchronous I/O : ASIO

→ Libevent (C)
→ Most mature implementation

→ LibUV
→ node.js backend

→ POSIX ASIO asynchronous I/O
→ scalability limited

→ Green Threads
→ If your language support it

Author(s) names – Affiliation

Lecture series title/ lecture title

13

More about this

References :

➔ C10K publication :
➔ http://www.kegel.com/c10k.html

➔ Boost ASIO documentation examples :
➔ http://www.boost.org/doc/libs/1_55_0/doc/html/boost_asio/examples/cpp11_e

xamples.html

● LibEvent website:
➔ http://libevent.org/

➔ Reactor vs proactor pattern

➔ Node.js

http://www.kegel.com/c10k.html
http://www.boost.org/doc/libs/1_55_0/doc/html/boost_asio/examples/cpp11_examples.html
http://www.boost.org/doc/libs/1_55_0/doc/html/boost_asio/examples/cpp11_examples.html
http://libevent.org/

Author(s) names – Affiliation

Lecture series title/ lecture title

14

Conclusion

• Use asynchronous I/O in I/O
bound softwares

• Use a ThreadPool instead of
One thread per request

• Use task/event base model.

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14

