#### **Student Presentation**

# Linux Containers (LXC)

Lightweight virtualisation alternative to VMs

Elvin Sindrilaru

**CERN** 

Thematic CERN School of Computing 2014



#### **Outline**

Linux namespaces and control groups (cgroups)

Linux containers (LXC)

Docker – LXC high level wrapper

Containers demo



### Linux namespaces

- The purpose of a namespace is to wrap a particular global system resource in an abstraction that makes it appear to the process within the namespace that they have their own isolated instance of the global resource.
- Currently 6 namespaces implemented in the Linux Kernel:
  - Mount
  - UTS (Unix Time-sharing System)
  - IPC (Inter-process communication)
  - PID
  - Network
  - User namespace



### Linux cgroups

- Cgroups allow allocating resources to user-defined groups of processes running on the system
- Cgroup subsystems (resources controllers) = kernel modules aware of cgroups which allocate varying levels of system resources to cgroups
- Everything is exposed through a virtual filesystem: /cgroups, /sys/fs/cgroup ... - mountpoint may vary
- Currently up to 10 subsystems:
  - blkio set limits on input/output access to/from block devices such as physical drives
  - cpuset assign individual CPUs to tasks in a cgroup
  - memory limits on memory used by tasks in a cgroup



#### **Linux containers - LXC**

- Containers
  - tool for lightweight virtualization
  - provides a group of processes the illusion that they are the only ones running on the system
- Advantages in comparison to traditional VM:
  - Fast to deploy seconds
  - Small memory footprint MBs
  - Complete isolation without a hypervisor

Namespaces + Cgroups => Linux containers



#### Containers on a host machine









Linux kernel >= 3.8





### **Docker-LXC** wrapper

 "Open-source project to easily create light-weight, portable, self-sufficient containers from any application"





### **Docker – Layers**

- Union File System union of read-write layer and all readonly layers
- Docker Image read-only layer, basically the root filesystem where lxc containers run in



All modifications go into the RW layer



#### **Docker Containers**

- Container
  - Read-write layer
  - Information about Parent Image (RO layers)
  - Unique id + network configuration + resource limits
  - Exited container preserves the file system state but not the memory state
- Inside it looks like a VM, outside looks like a normal process
- Containers have state: running / exited
- Containers can be promoted to images: "docker commit"
- > Takes a snapshot of the whole filesystem (RW+RO)



## **Containers Demo**