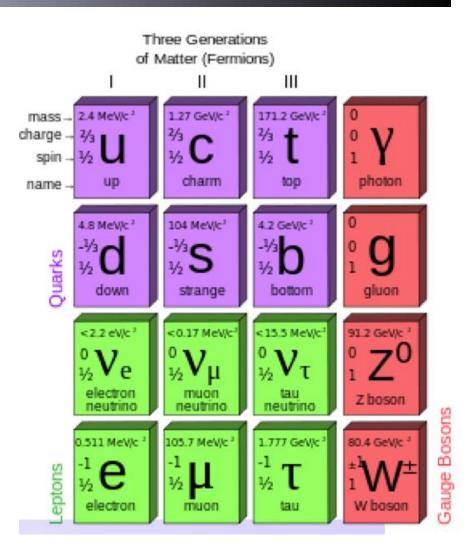
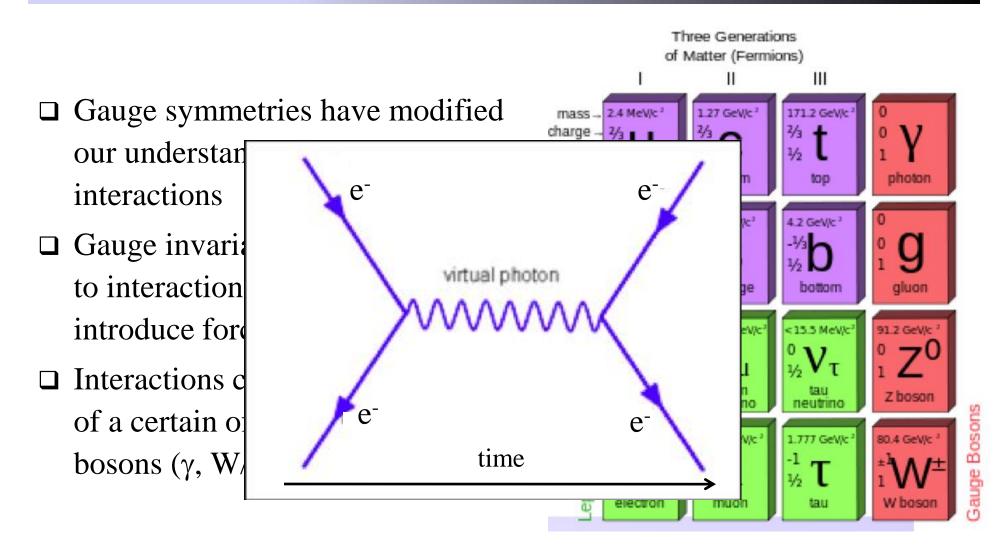


Physics at the LHC run 1

C. Charlot / LLR- École Polytechnique Thematic CERN School of Computing, 16-25 juin 2014, Split, Crotia


Standard Model of Particle Physics

- Elementary matter consist of quark and leptons
- The standard model of elementary particles is built upon gauge symmetries
- Internal symmetries (extending over geometrical symmetries)
- Conserved quantities (quantum numbers): electric charge, colour, spin, ...

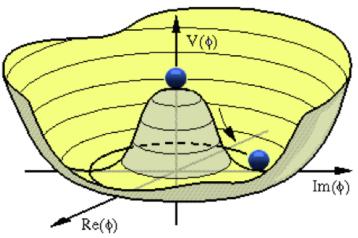


Standard Model of Particle Physics

- Gauge symmetries have modified our understanding of forces / interactions
- Gauge invariance naturally leads to interactions terms, no need to introduce forces between particles
- Interactions consist of exchanges of a certain of particles = vector bosons (γ, g, Z⁰, W^{+/-})

Standard Model of Particle Physics

A problem

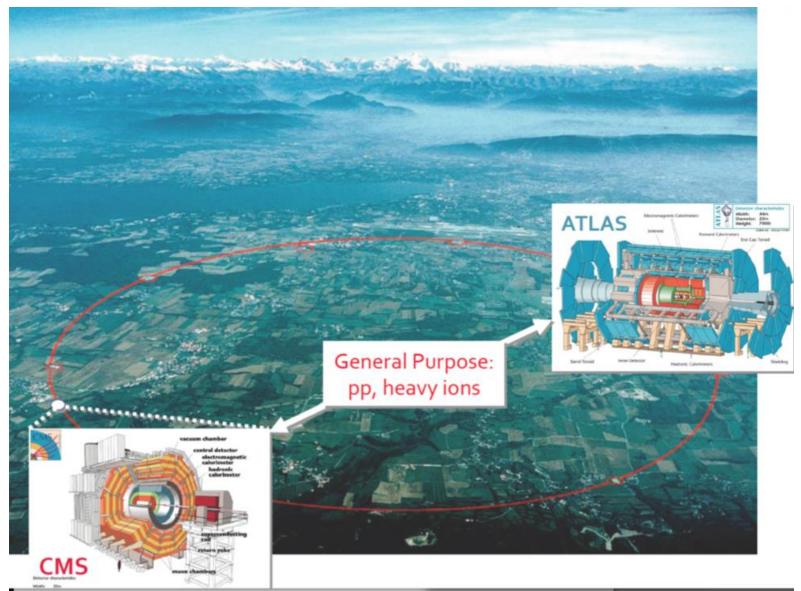

- This picture has been extremely successful but gauge invariance implies massless gauge bosons, or, equivalently, interactions of infinite range
- □ It is known experimentally fact that the gauge bosons associated with the weak interaction (W⁺,W⁻,Z⁰), i.e. that weak interactions have a short range

 \square m_Z=91.2 GeV and m_W=80.4 GeV

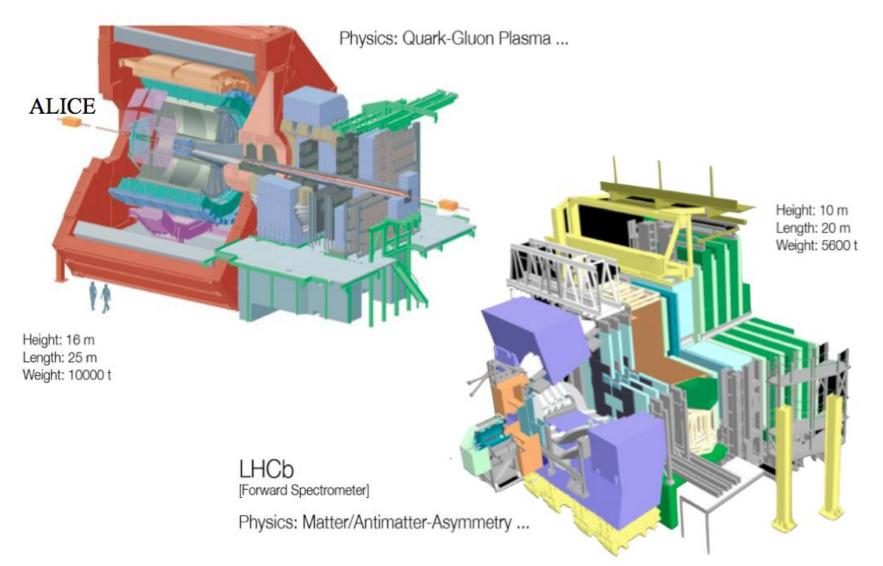
□ Therefore, either the picture of interaction as the exchange of vector bosons is wrong, or there is a way to preserve this description in the case of short range interactions (or massive vector bosons)

Spontaneous Electroweak Symmetry Breaking

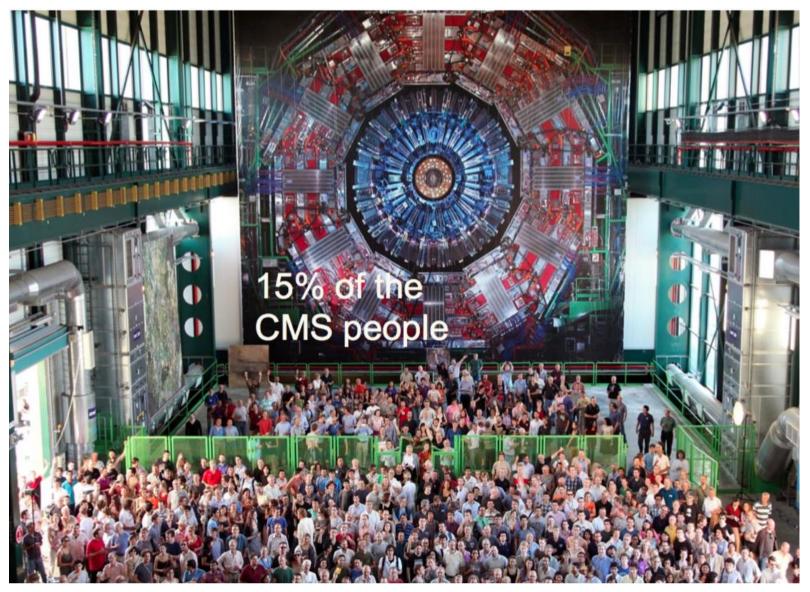
- □ The solution is spontaneous symmetry breaking
- A physics system has a symmetry but the state of lowest energy (e.g. the vacuum) does not have the symmetry
- As a consequence of EWSB the weak
 W and Z bosons become massive and
 a new (scalar) particle appears: the
 Higgs boson
- It turns out that this mechanism also allows to introduce masses for the quarks and the leptons

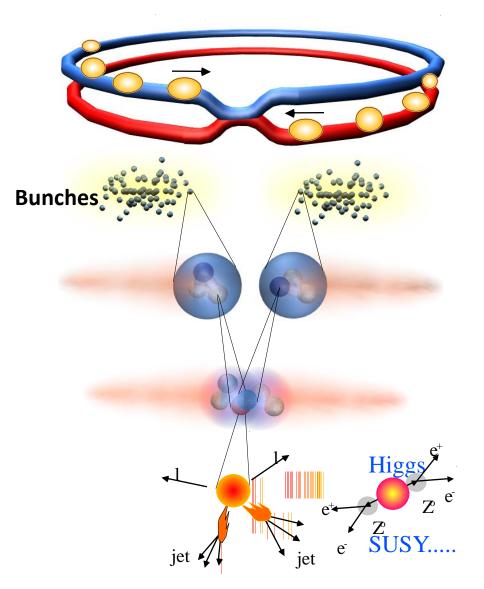

New scalar field ϕ

Brout, Englert, Guralnik, Hagen, Higgs, Kibble (1964)


Large Hadron Collider

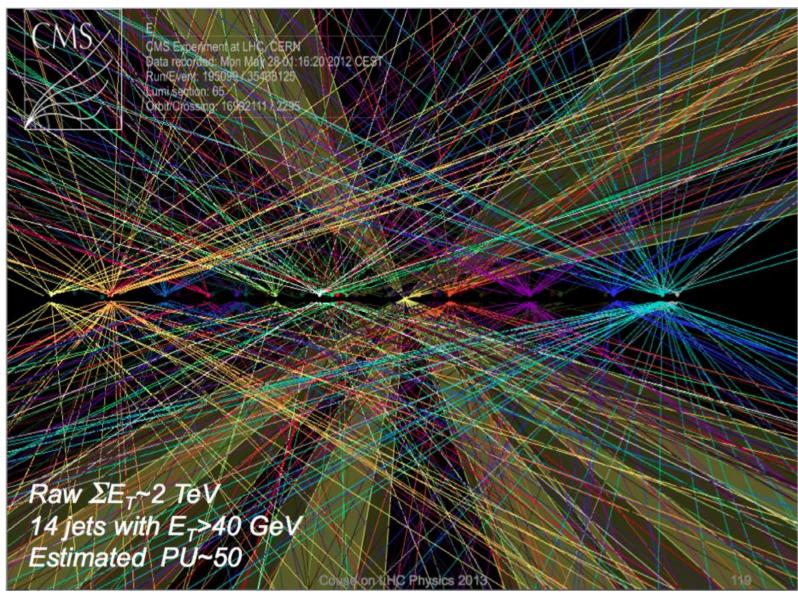
Underground circular tunnel 27 km circumference; 100 m underground 4 caverns for experiments ~10 Km


LHC experiments

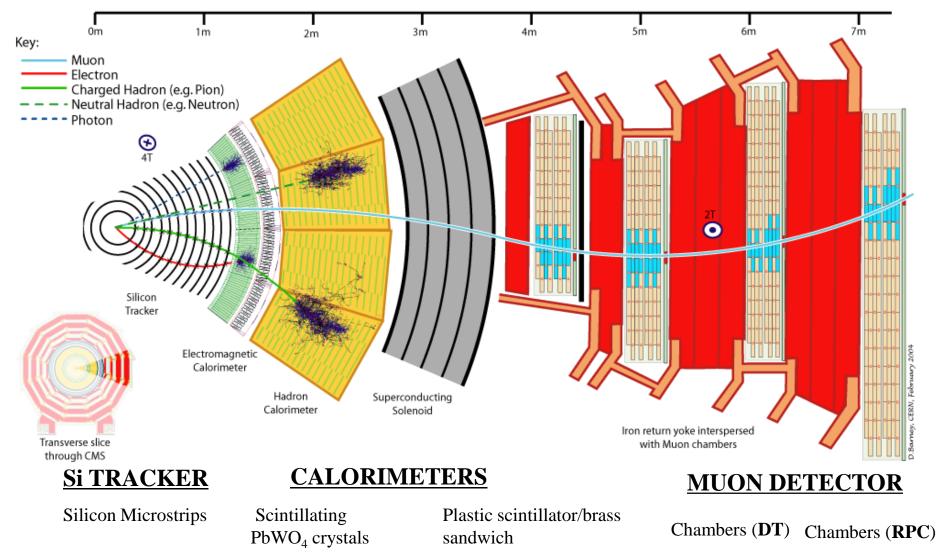

LHC experiments

LHC experiments

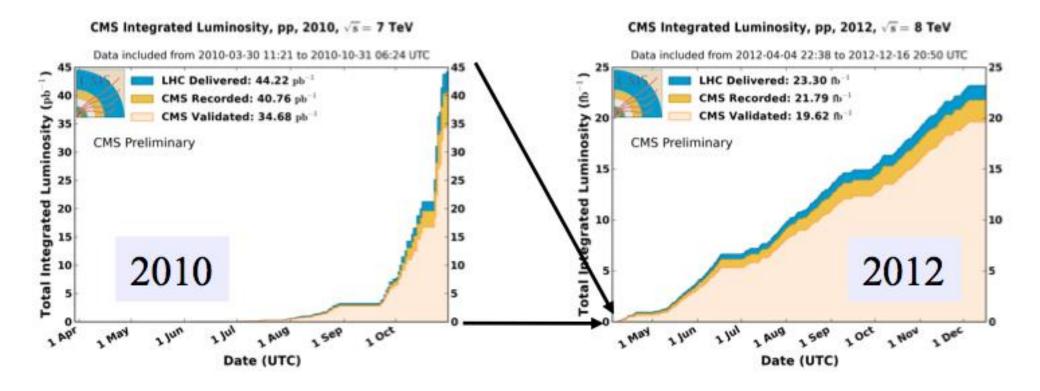
Collisions at LHC


Proton - Proton Protons/bunch Beam energy Luminosity * Bunch collision frequency Proton collision frequency 1300 bunches/beam 10¹¹ 4 TeV (4x10¹² eV) 10³⁴ cm⁻² s⁻¹ 20 MHz ~5.10⁸ Hz (μ~25)

* A measure of the intensity and focalisation of the beams = rate of events for a given process N = L x σ

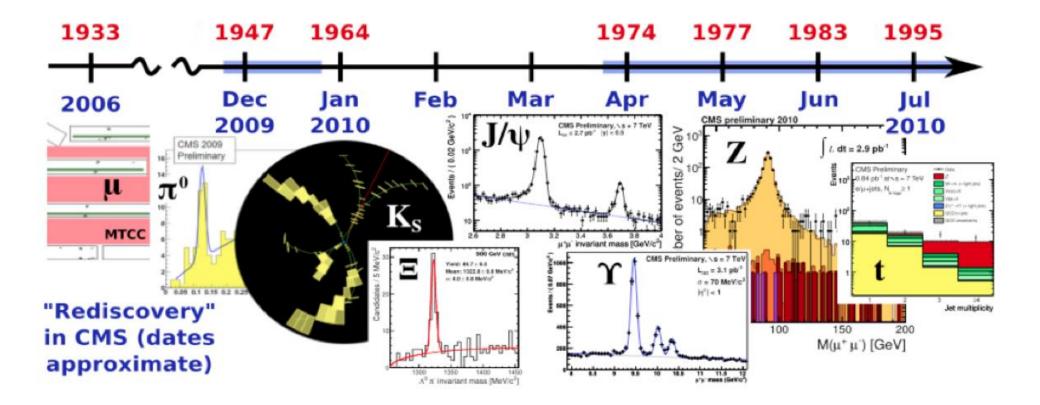

"New physics" frequency .00001 Hz (o(10²) / an)

Event selection: 1 u 10 000 000 000 000


Pileup conditions

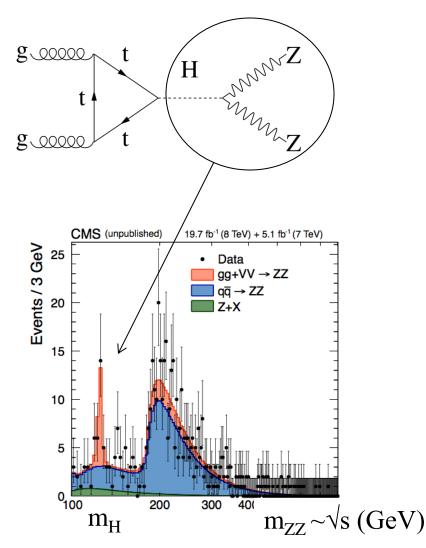
Particle detection

Data taking



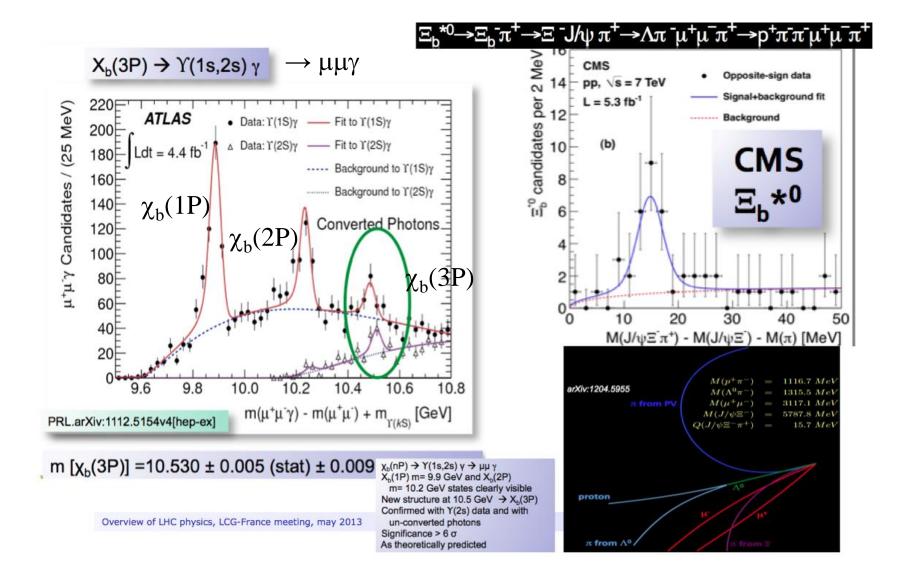
Huge increase in luminosity at the beginning (notice the change of scale!)
 Then ~ steady operation (~linear increase with time)

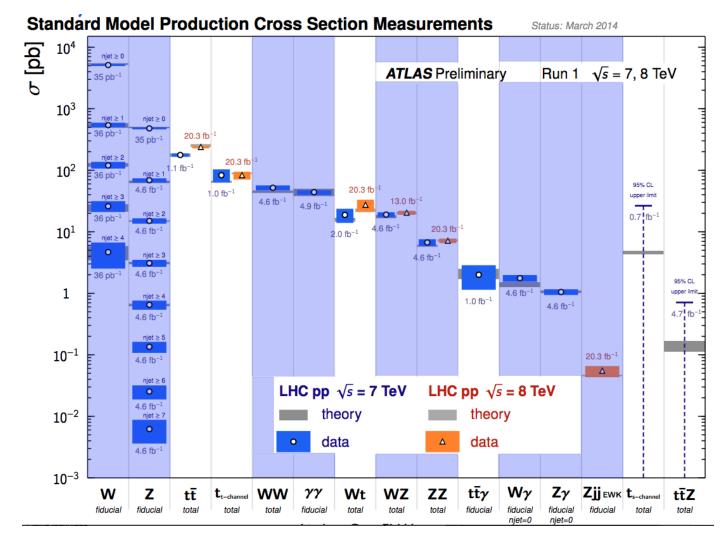
ATLAS and CMS


- Study of the Standard Model
 QCD
 - □ EWK physics, top physics
- □ Higgs boson search and Higgs physics
 - □ Search for other Higgs bosons
 - □ Properties
- □ Search for physics beyond the Standard Model
 - □ Supersymmetry
 - \square New resonances
- □ Anything new we have not anticipated ...

Rediscovery of the Standard Model

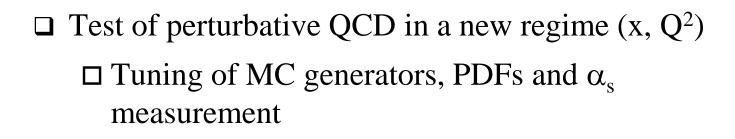
What is a particle?

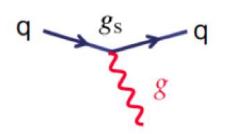

- Most elementary particles are unstable
- Unstable particles characterized
 by decay width which relates to
 the couplings to other particles
 - □ Higher couplings => shorter lifetime
 - From quantum mechanics => higher fluctuation of the energy of the system
- Particles therefore seen as peaks at the resonant energy with a width that characterizes its couplings to the other particles

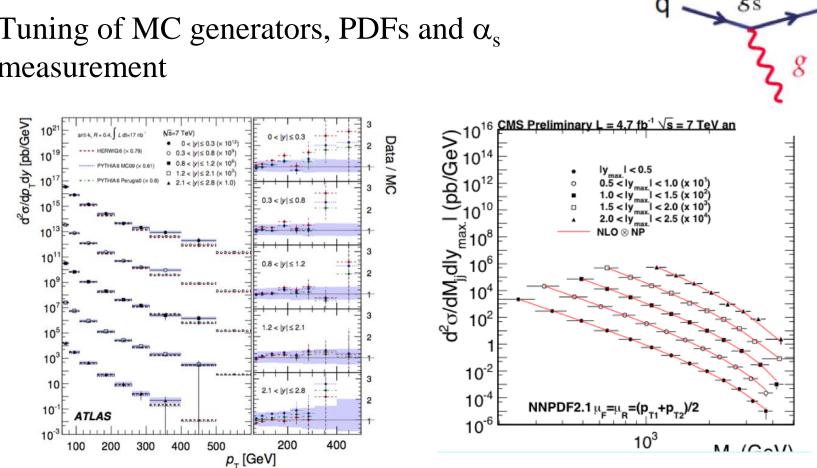

□ Intrinsic width can be smaller than experimental resolution

Overview of LHC physics, Thematic CERN school of computing, june 2014, Split

New particles

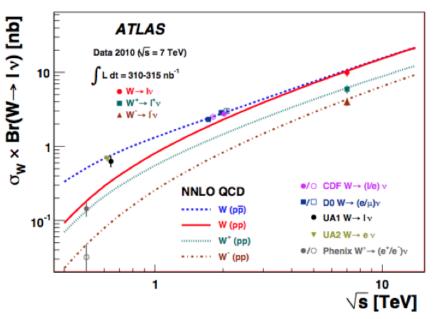


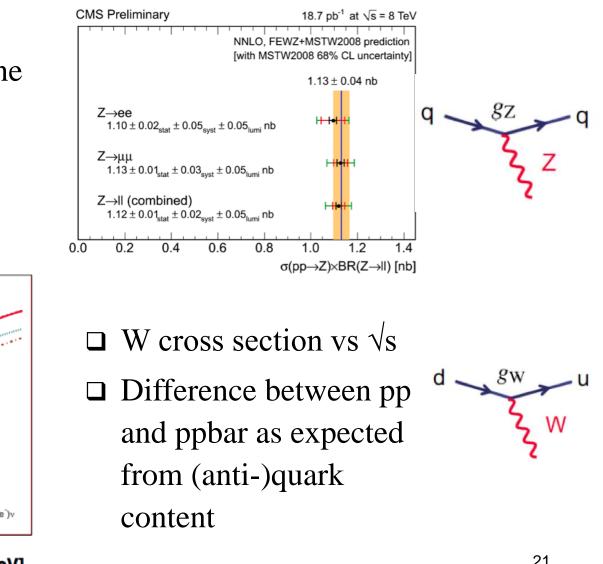

Standard model after the run 1



□ Lots of data, impressive agreement with predictions

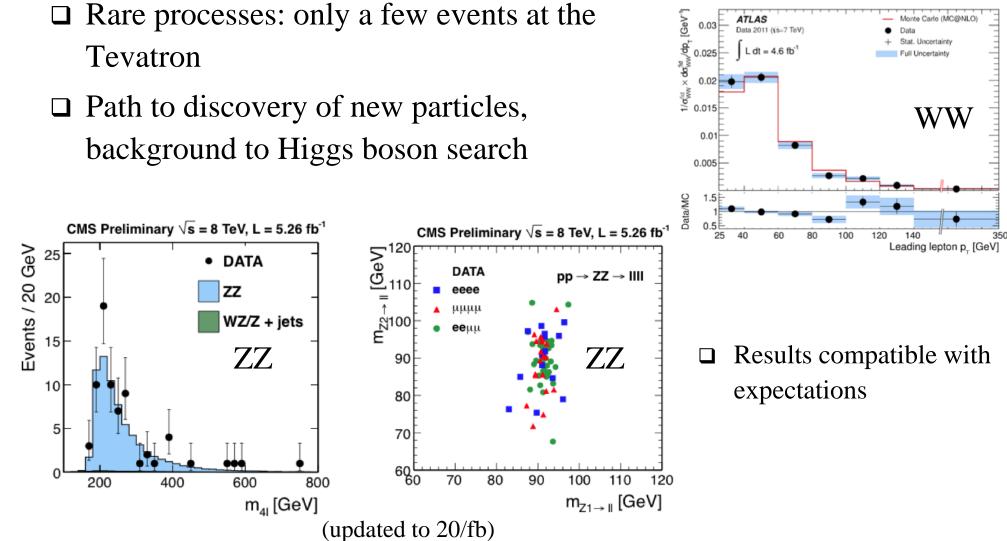
QCD and jets



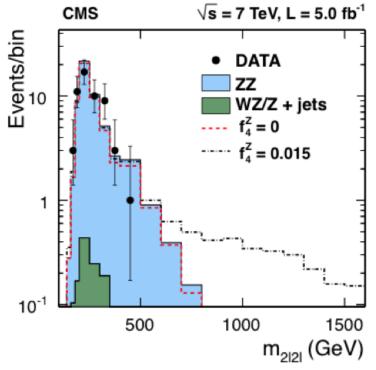


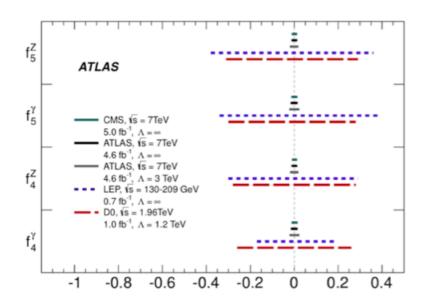
□ Excellent agreement over many decades

EWK boson production


- □ Universal decay to leptons $Z \rightarrow ll \ (l=e,\mu,\tau) => combine$ the channels
- □ Rates in agreement with expectation

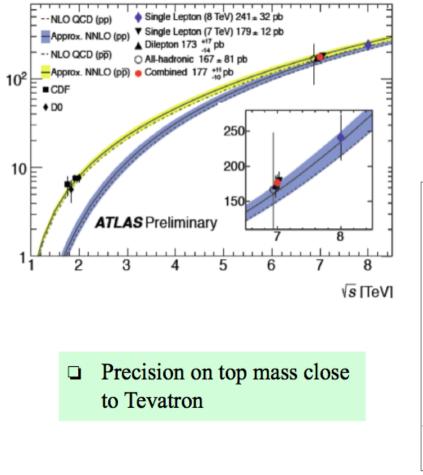
Overview of Life physics, includic CERN school of computing, june 2014, Split


Dibosons: WW, WZ and ZZ

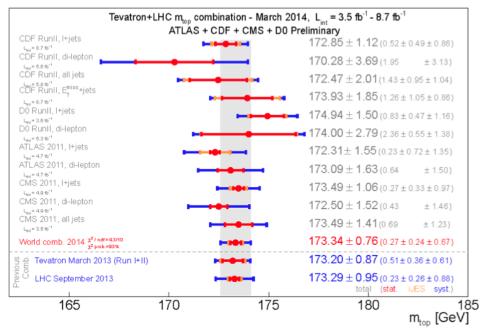

Overview of LHC physics, Thematic CERN school of computing, june 2014, Split

Dibosons: WW, WZ, ZZ

 Search for anomalous triple gauge couplings / deviations from Standard Model



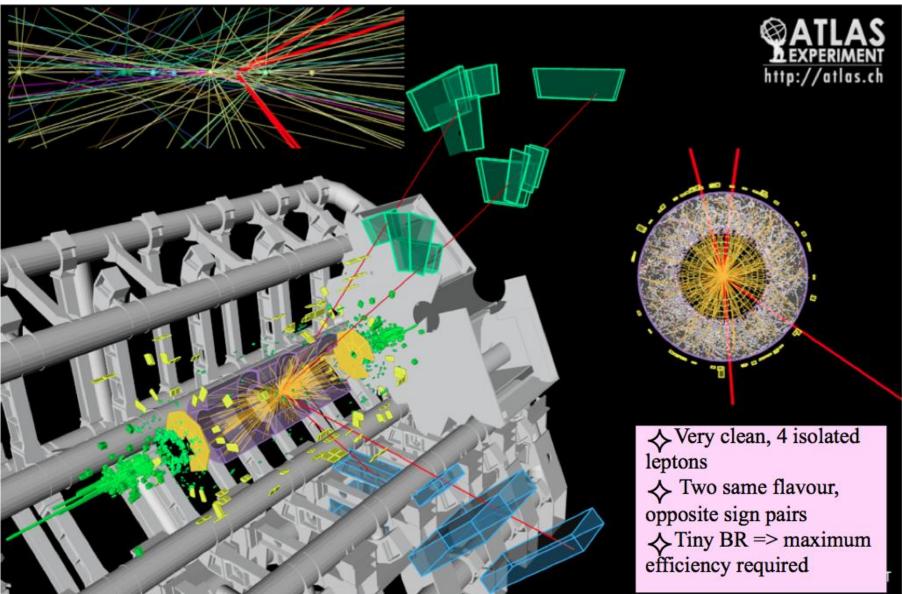
 Example of an expected deviation for a particular model



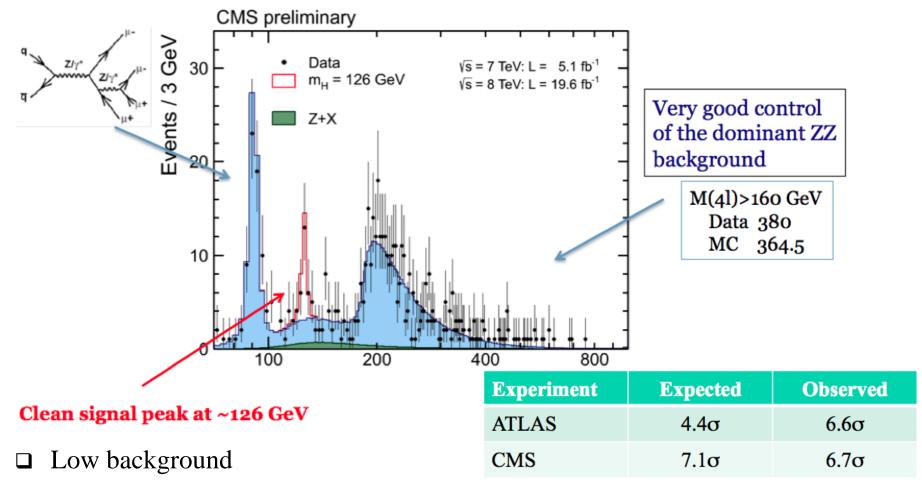
Resulting measurements much more precise than at LEP

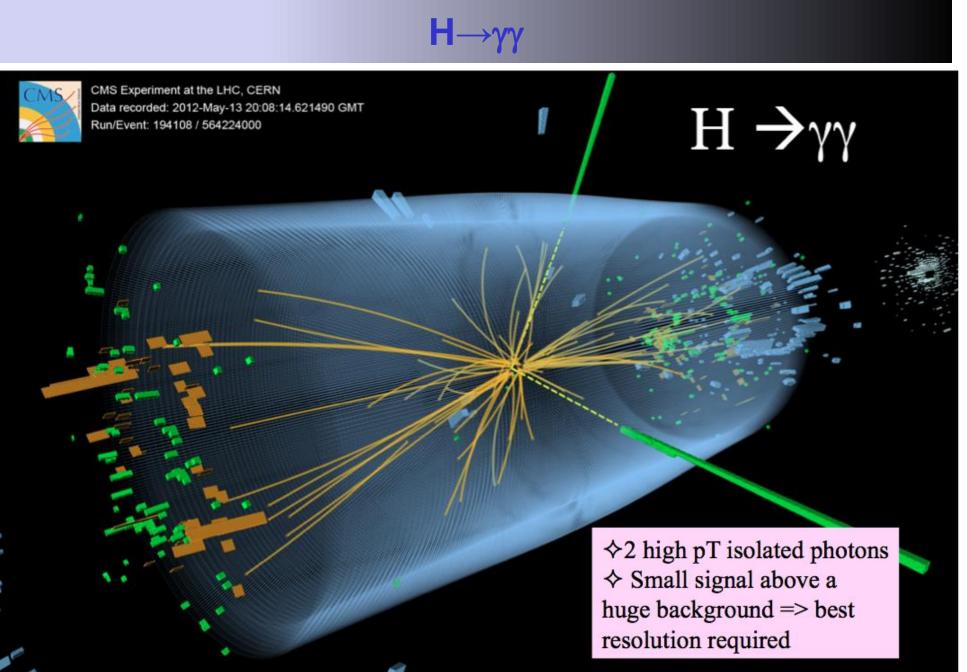
Top physics

 Good description of production vs center of mass energy, pp vs ppbar

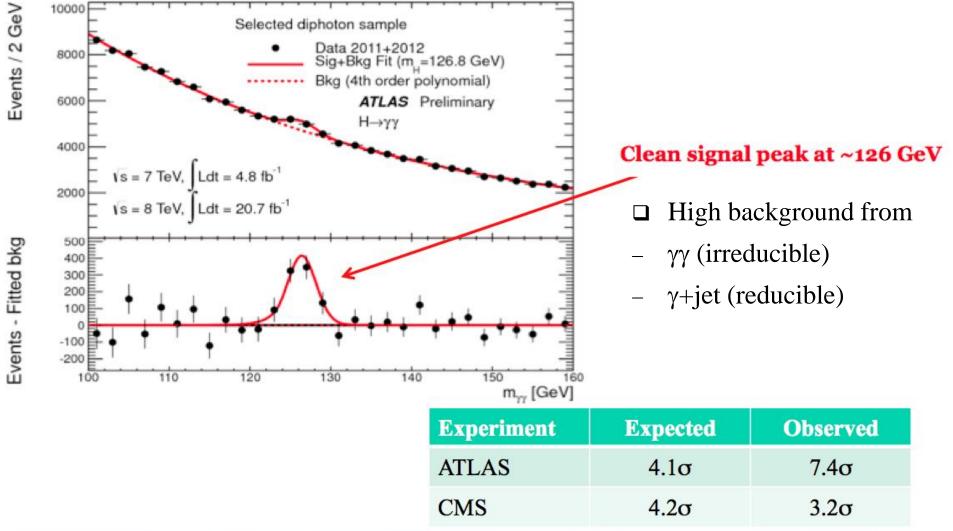


□ LHC/Tevatron combination: 173.34 ± 0.76 GeV (Tevatron: ± 0.87 , LHC: ± 0.95)


The Higgs

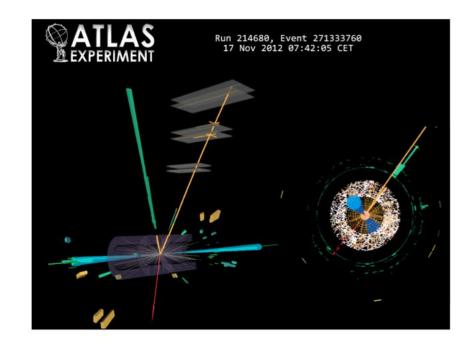

H→ZZ→4leptons

H→ZZ*→4leptons

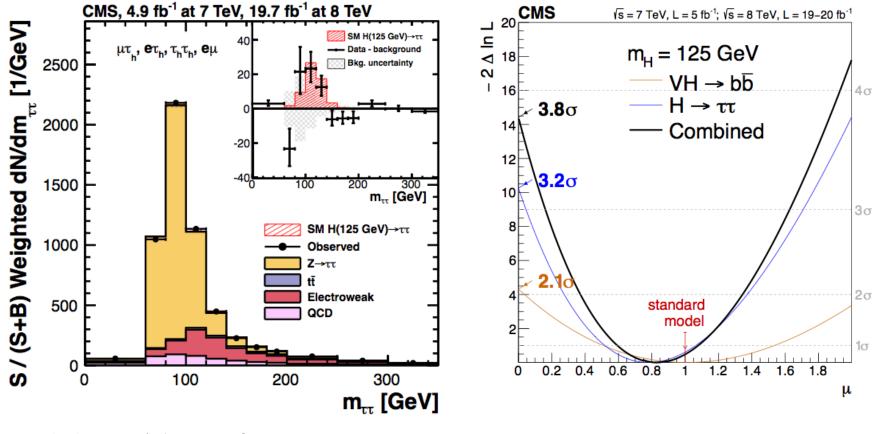


(as of winter 2013)

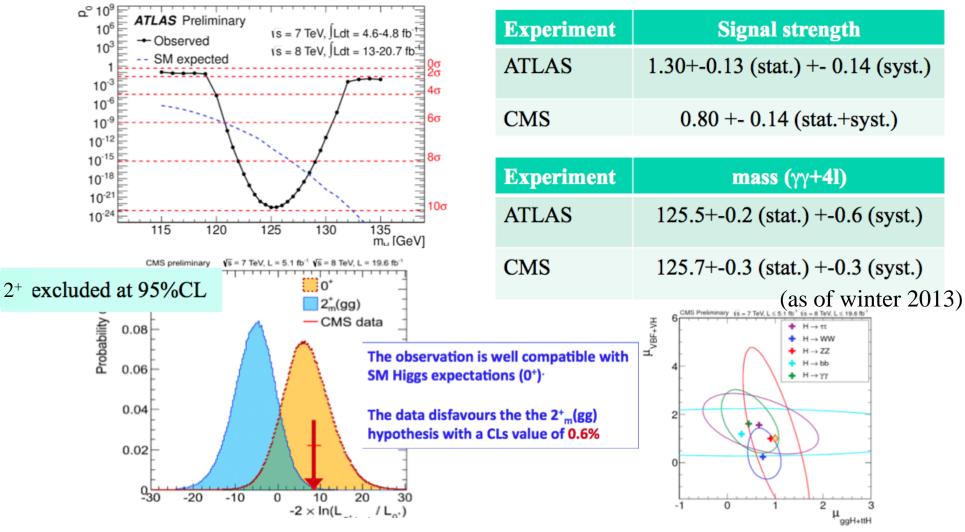
Overview of LHC physics, Thematic CERN school of computing, june 2014, Split


Η→γγ

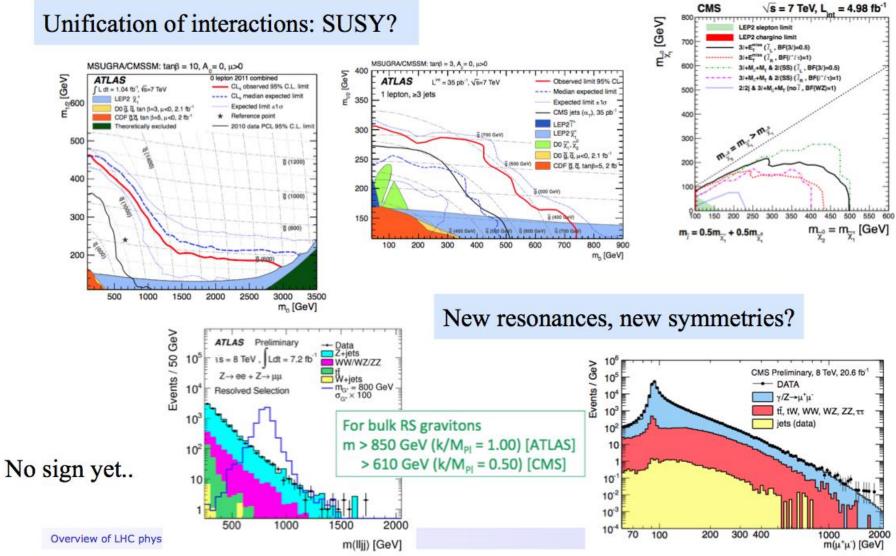
(as of winter 2013) Overview of LHC physics, Thematic CERN school of computing, june 2014, Split


$H \rightarrow WW$

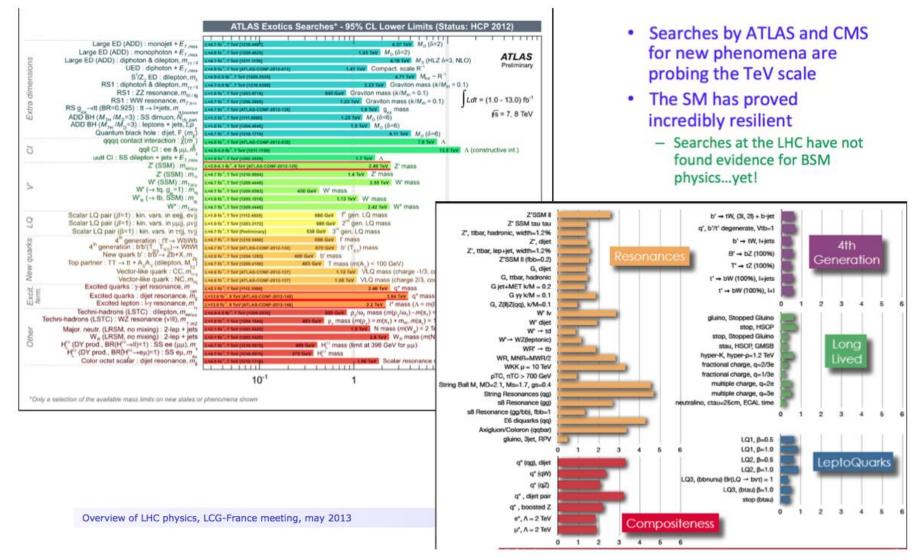
 Low resolution channel
 neutrinos
 High event yield
 High background
 (reducible + irreducible)


Experiment	Expected	Observed
ATLAS	4.1σ	7.4σ
CMS	4.2σ	3.2σ
(as of winter 2013)		

Higgs coupling to fermions


- $\Box 3.2\sigma \text{ evidence from } H \rightarrow \tau\tau$
- \Box Combined H $\rightarrow \tau\tau$ and VH, H \rightarrow bb: 3.8 σ

Higgs: properties



□ And many more results, so far all consistent with SM ...

Beyond Standard Model

Beyond Standard Model

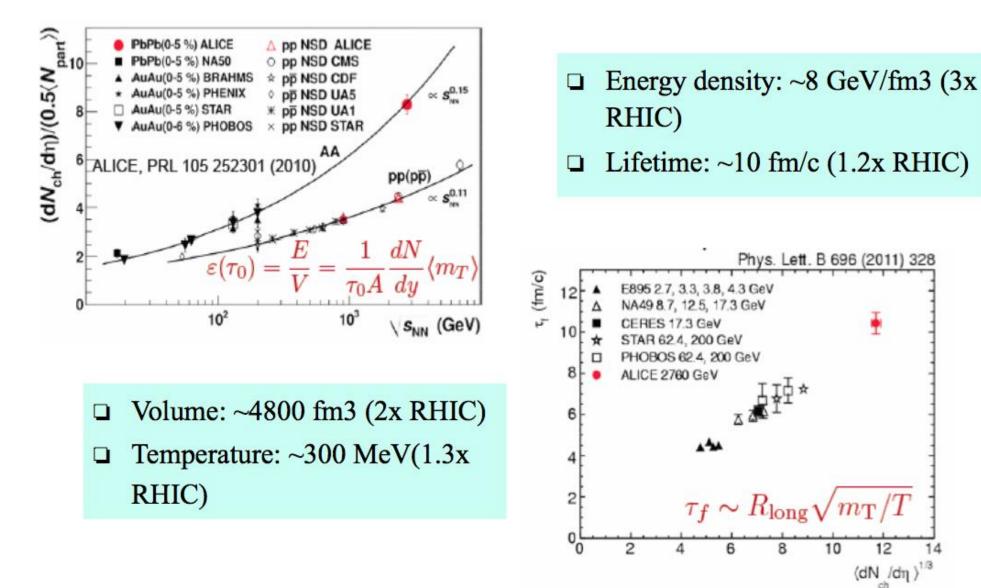
Heavy ions

- □ Charged particle production, soft QCD
- □ Search for / study of the quark-gluon plasma
 - □ Jet quenching
 - □ Elliptic flow
 - D Quarkonia

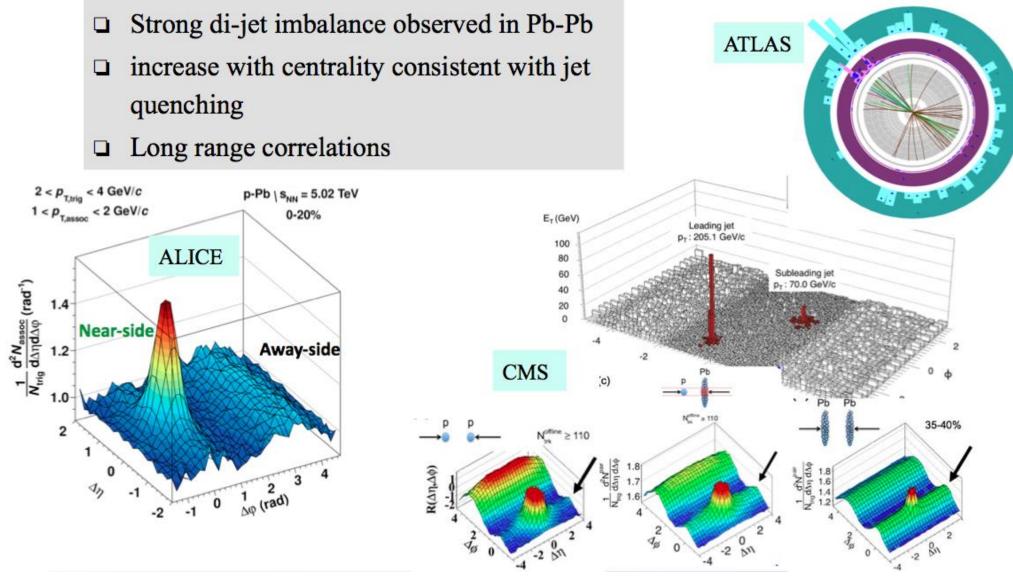
Energy density, volume, lifetime

Phys. Lett. B 696 (2011) 328

8

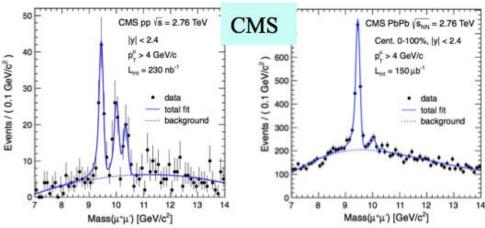

6

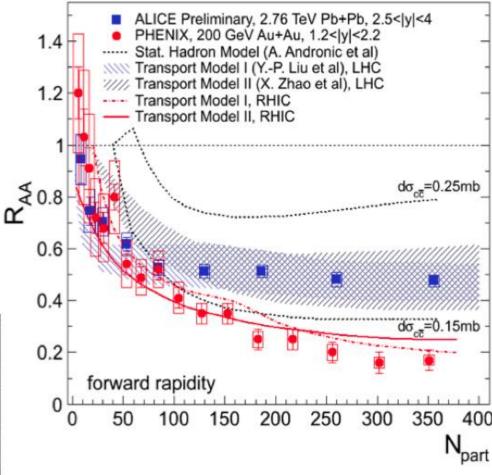
10


12

 $\left< dN \right>^{1/3}$

14

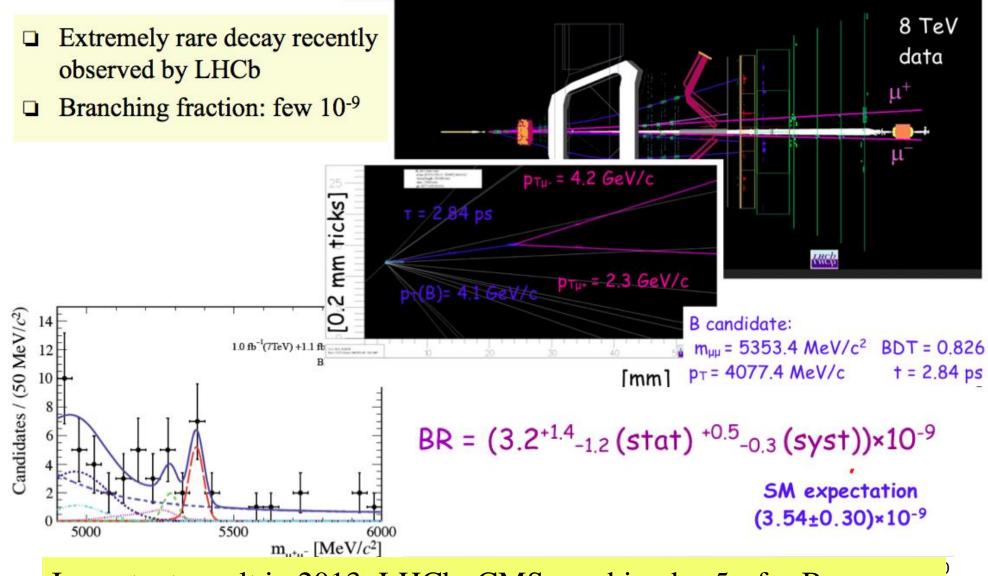

Particle correlation, jet quenching



Overview of LHC physics, Thematic CERN school of computing, june 2014, Split

Color screening in QGP

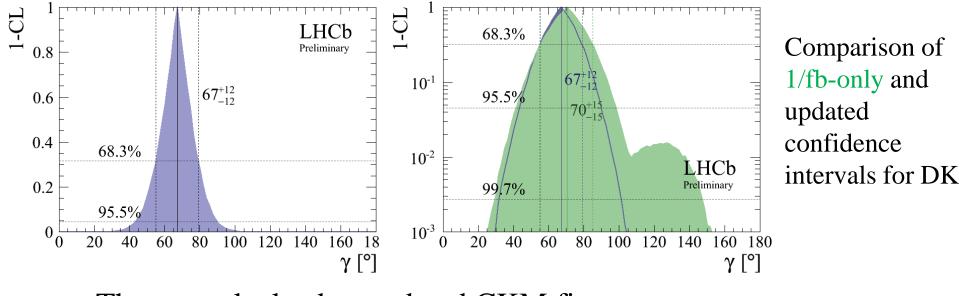
- J/Psi and Y suppression for central collisions due to color screening is one of the original predictions for QGP
- At LHC less suppression than at RHIC: re-generation?



LHCb

□ Flavor physics

- □ Observe rarest decays
- □ Understand CP violation, matter / anti-matter asymmetry
- □ Search for new physics (indirect effects)
- □ Discovery of new particles


$$B_s \rightarrow \mu \mu$$

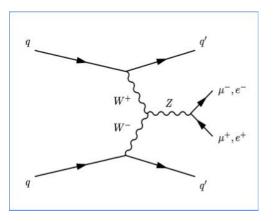
Important result in 2013: LHCb+CMS combined: $>5\sigma$ for B_s -> $\mu\mu$

LHCb: CKM matrix

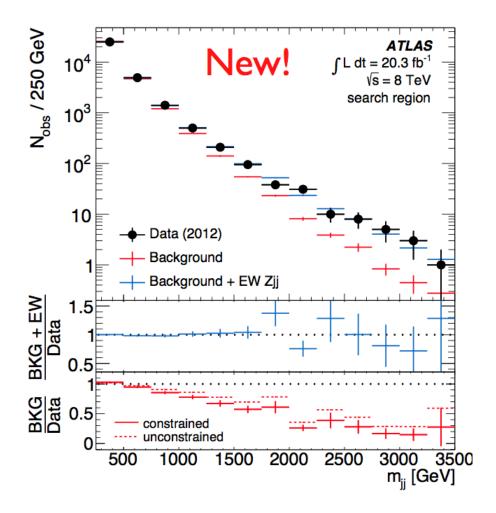
□ Recent combination from LHCb □ Uses analyses of B→DK and D→K_sKK or K_s $\pi\pi$ □ Preliminary result γ =67+-12°

•These results lead to updated CKM fits:

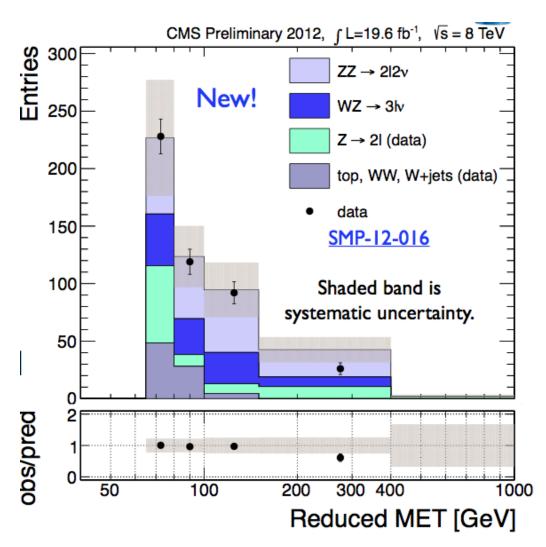

$$\gamma = 68.0$$
 ° (CKMFitter, FPCP 2013),
 $\gamma = 70.1 \pm 7.1$ ° (UTFit, EPS 2013).


Summary and conclusions

□ 2010-2013 has been a very exciting period for particle physics □ The accelerator and the detectors have been working very well □ Plenty of physics result and the major discovery of the awaited Higgs boson \Box A new period will start in 2015 after LS1 □ Precise measurement of the Higgs properties □ Already started but will benefit from increased statistics □ From where comes the EWSB? Other Higgs bosons? □ Search for beyond standard model physics □ How to stabilize the Higgs mass? Unification at high energy? Supersymmetry? Reasons for the 3 families? ...? □ More on QGP, flavour physics and CP violation □ Much more luminosity but also more pileup □ A new challenge for computing and software

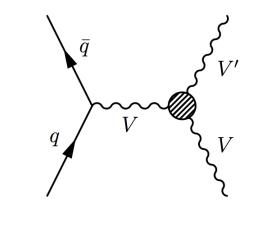

Additional material

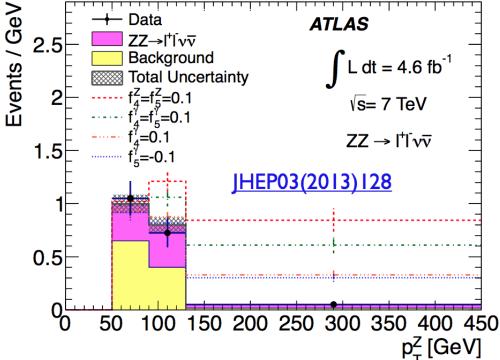
EWK Z production



>5sigma observation with 8 TeV data

ZZ


- ZZ->llnunu cross section measurement
- Reduced MET gives
 better rejection of the DY
 background
- □ Updated aTGC limit
- □ New ATLAS result



aTGC

- Search for effect of higher order operators in the SM lagrangien
 - □ Effect of new particles in loops
 - Massive propagator in 4 boson vertex
- Operators generate new couplings that become important at high transverse momentum

Overview of LHC physics, Thematic CERN

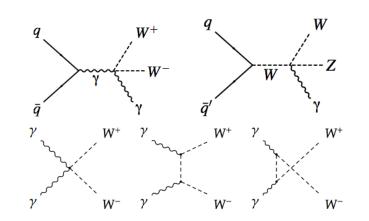
aTGC

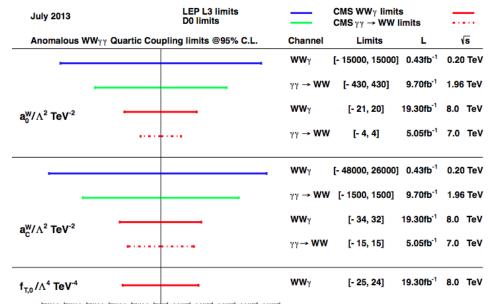
- Update in neutral anomalous couplings
- □ CMS 2l2nu analysis
- □ High branching fraction
- Further constraint by combining the channel underway

			ATLAS Limits H CMS Limits H CDF Limit H
Lγ	H	Zγ	-0.015 - 0.016 4.6 f
h_3^γ	н	Zγ	-0.003 - 0.003 5.0 f
		Zγ	-0.022 - 0.020 5.1 f
ьZ	⊢I	Zγ	-0.013 - 0.014 4.6 f
h_3^Z	н	Zγ	-0.003 - 0.003 5.0 f
	H	Zγ	-0.020 - 0.021 5.1 f
L.Y. 100	⊢ − − 1	Zγ	-0.009 - 0.009 4.6 f
h ₄ γx100	н	Zγ	-0.001 - 0.001 5.0 f
hZv100	⊢	Zγ	-0.009 - 0.009 4.6 f
$h_4^2 x 100$	н	Zγ	-0.001 - 0.001 5.0 f
0.5			1 1.5 x
-0.5	0	0.5	1 15 X
Nov 2013			GC Limite @95% C
Nov 2013			
			GC I imite @Q5% C
Nov 2013		Tc	ATLAS Limits
		Tد , , , , , , , , , , , , , , , , , , ,	CC I imite @Q5% C ATLAS Limits CMS Prel. Limits -0.015 - 0.015 4.6 fb ⁻¹ -0.004 - 0.004 19.6 fb ⁻¹ -0.004 - 0.003 5.1, 19.6 fb ⁻¹
f ^Ŷ ₄		ZZ ZZ ZZ (2l2v) ZZ	ATLAS Limits -0.015 - 0.015 4.6 fb ⁻¹ -0.004 - 0.004 19.6 fb ⁻¹ -0.004 - 0.003 5.1, 19.6 fb ⁻¹ -0.013 - 0.013 4.6 fb ⁻¹
		ZZ ZZ ZZ (2l2v) ZZ ZZ	C. Limite @Q5% ATLAS Limits CMS Prel. Limits -0.015 - 0.015 4.6 fb ⁻¹ -0.004 - 0.004 19.6 fb ⁻¹ -0.004 - 0.003 5.1, 19.6 fb ⁻¹ -0.013 - 0.013 4.6 fb ⁻¹ -0.004 - 0.004 19.6 fb ⁻¹
f ^Ŷ ₄		ZZ ZZ ZZ (2l2v) ZZ ZZ (2l2v) ZZ ZZ (2l2v)	C. Limite @Q5% ATLAS Limits CMS Prel. Limits -0.015 - 0.015 4.6 fb ⁻¹ -0.004 - 0.004 19.6 fb ⁻¹ -0.004 - 0.003 5.1, 19.6 fb ⁻¹ -0.013 - 0.013 4.6 fb ⁻¹ -0.004 - 0.004 19.6 fb ⁻¹ -0.003 - 0.003 5.1, 19.6 fb ⁻¹
f_4^{γ} f_4^{Z}		ZZ ZZ ZZ (2l2v) ZZ ZZ (2l2v) ZZ ZZ (2l2v) ZZ	ATLAS Limits -0.015 - 0.015 4.6 fb ⁻¹ -0.004 - 0.004 19.6 fb ⁻¹ -0.004 - 0.003 5.1, 19.6 fb ⁻¹ -0.013 - 0.013 4.6 fb ⁻¹ -0.004 - 0.004 19.6 fb ⁻¹ -0.003 - 0.003 5.1, 19.6 fb ⁻¹ -0.016 - 0.015 4.6 fb ⁻¹
f ^Ŷ ₄		ZZ ZZ ZZ (2l2v) ZZ ZZ (2l2v) ZZ ZZ (2l2v) ZZ ZZ (2l2v) ZZ ZZ	ATLAS Limits -0.015 - 0.015 4.6 fb ⁻¹ -0.004 - 0.004 19.6 fb ⁻¹ -0.004 - 0.003 5.1, 19.6 fb ⁻¹ -0.013 - 0.013 4.6 fb ⁻¹ -0.004 - 0.004 19.6 fb ⁻¹ -0.003 - 0.003 5.1, 19.6 fb ⁻¹ -0.016 - 0.015 4.6 fb ⁻¹ -0.005 - 0.005 19.6 fb ⁻¹
f_4^{γ} f_4^{Z}		ZZ ZZ ZZ (2l2v) ZZ ZZ (2l2v) ZZ ZZ (2l2v) ZZ ZZ ZZ(2l2v)	ATLAS Limits -0.015 - 0.015 4.6 fb ⁻¹ -0.004 - 0.004 19.6 fb ⁻¹ -0.004 - 0.003 5.1, 19.6 fb ⁻¹ -0.013 - 0.013 4.6 fb ⁻¹ -0.004 - 0.004 19.6 fb ⁻¹ -0.003 - 0.003 5.1, 19.6 fb ⁻¹ -0.016 - 0.015 4.6 fb ⁻¹ -0.005 - 0.005 19.6 fb ⁻¹ -0.004 - 0.004 5.1, 19.6 fb ⁻¹
f_4^{γ} f_4^{Z} f_5^{γ}		ZZ ZZ ZZ (2l2v) ZZ ZZ (2l2v) ZZ ZZ (2l2v) ZZ ZZ(2l2v) ZZ	C. I imite @Q5% C ATLAS Limits CMS Prel. Limits -0.015 - 0.015 4.6 fb ⁻¹ -0.004 - 0.004 19.6 fb ⁻¹ -0.004 - 0.003 5.1, 19.6 fb ⁻¹ -0.013 - 0.013 4.6 fb ⁻¹ -0.004 - 0.004 19.6 fb ⁻¹ -0.003 - 0.003 5.1, 19.6 fb ⁻¹ -0.016 - 0.015 4.6 fb ⁻¹ -0.005 - 0.005 19.6 fb ⁻¹ -0.004 - 0.004 5.1, 19.6 fb ⁻¹ -0.013 - 0.013 4.6 fb ⁻¹
f_4^{γ} f_4^{Z}		ZZ ZZ ZZ (2l2v) ZZ ZZ (2l2v) ZZ ZZ (2l2v) ZZ ZZ ZZ(2l2v)	ATLAS Limits -0.015 - 0.015 4.6 fb ⁻¹ -0.004 - 0.004 19.6 fb ⁻¹ -0.004 - 0.003 5.1, 19.6 fb ⁻¹ -0.013 - 0.013 4.6 fb ⁻¹ -0.004 - 0.004 19.6 fb ⁻¹ -0.003 - 0.003 5.1, 19.6 fb ⁻¹ -0.016 - 0.015 4.6 fb ⁻¹ -0.005 - 0.005 19.6 fb ⁻¹ -0.004 - 0.004 5.1, 19.6 fb ⁻¹

Overview of LHC physics, Thematic CERN sch

aTGC Limits @95% C.L.

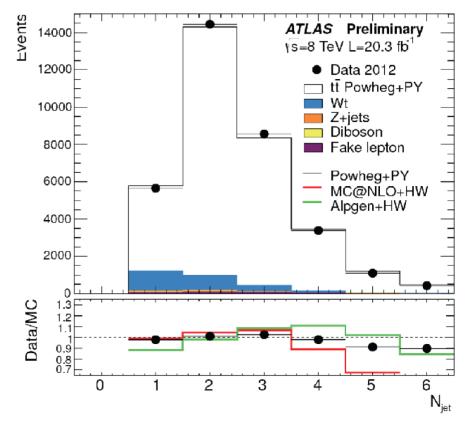

aTGC


- Charged anomalous triple gauge coupling
- □ LHC approaching LEP results
- □ Surpassing LEP in some cases!
- □ New final states exploited
- □ WV, V->jj
- Analysis still ongoing in several channels
- □ Further improvements expected

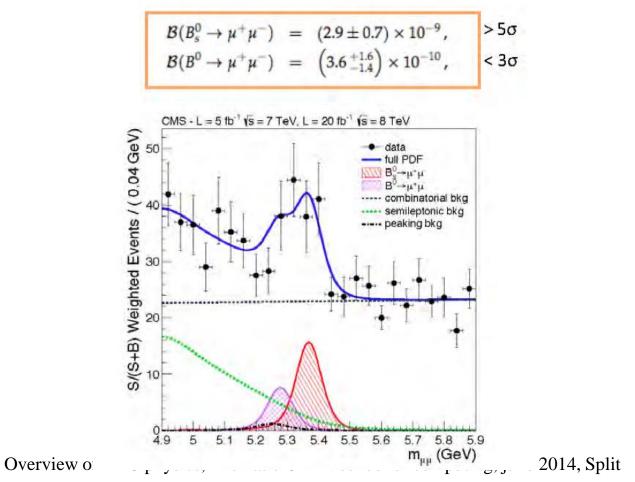
Feb 2013			
			ATLAS Limits CMS Limits CMS Limits CMS Limits CMS Limit CMS LIMI CMS LIM
Ar -		- Wγ	-0.410 - 0.460 4.6 fb ⁻¹
Δκ _γ		Wγ	-0.380 - 0.290 5.0 fb ⁻¹
	H	WW	-0.210 - 0.220 4.9 fb ⁻¹
	H	WV	-0.110 - 0.140 5.0 fb ⁻¹
	⊢	D0 Combination	-0.158 - 0.255 8.6 fb ⁻¹
	⊢ ●	LEP Combination	-0.099 - 0.066 0.7 fb ⁻¹
2	H	Wγ	-0.065 - 0.061 4.6 fb ⁻¹
λ_{γ}	\vdash	Wγ	-0.050 - 0.037 5.0 fb ⁻¹
	⊢ →	ww	-0.048 - 0.048 4.9 fb ⁻¹
	н	WV	-0.038 - 0.030 5.0 fb ⁻¹
	ю	D0 Combination	-0.036 - 0.044 8.6 fb ⁻¹
	H	LEP Combination	-0.059 - 0.017 0.7 fb ⁻¹
-0.5	0	0.5 1	1.5
Feb 2013			
Feb 2013			ATLAS Limits CMS Limits D0 Limit LEP Limit
		 	ATLAS Limits CMS Limits D0 Limit LEP Limit -0.043 - 0.043 4.6 fb ⁻¹
Feb 2013 $\Delta \kappa_Z$		ww wv	ATLAS Limits CMS Limits D0 Limit LEP Limit -0.043 - 0.043 4.6 fb ⁻¹ -0.043 - 0.033 5.0 fb ⁻¹
Δκ _Ζ		WW WV LEP Combination	ATLAS Limits CMS Limits D0 Limit LEP Limit -0.043 - 0.043 4.6 fb ⁻¹ -0.043 - 0.033 5.0 fb ⁻¹ -0.074 - 0.051 0.7 fb ⁻¹
Δκ _Ζ	H	WW WV LEP Combination WW	ATLAS Limits CMS Limits D0 Limit LEP Limit -0.043 - 0.043 4.6 fb ⁻¹ -0.043 - 0.033 5.0 fb ⁻¹ -0.074 - 0.051 0.7 fb ⁻¹ -0.062 - 0.059 4.6 fb ⁻¹
	H	WW WV LEP Combination WW WW	ATLAS Limits CMS Limits D0 Limit LEP Limit -0.043 - 0.043 4.6 fb ⁻¹ -0.043 - 0.033 5.0 fb ⁻¹ -0.074 - 0.051 0.7 fb ⁻¹ -0.062 - 0.059 4.6 fb ⁻¹ -0.048 - 0.048 4.9 fb ⁻¹
Δκ _Ζ		WW WV LEP Combination WW	ATLAS Limits CMS Limits D0 Limit LEP Limit -0.043 - 0.043 4.6 fb ⁻¹ -0.043 - 0.033 5.0 fb ⁻¹ -0.074 - 0.051 0.7 fb ⁻¹ -0.062 - 0.059 4.6 fb ⁻¹
Δκ _Ζ		WW WV LEP Combination WW WW WZ	A ¹ LA ⁵ Limits CMS Limits D0 Limit LEP Limit -0.043 - 0.043 4.6 fb ⁻¹ -0.043 - 0.033 5.0 fb ⁻¹ -0.074 - 0.051 0.7 fb ⁻¹ -0.062 - 0.059 4.6 fb ⁻¹ -0.048 - 0.048 4.9 fb ⁻¹ -0.046 - 0.047 4.6 fb ⁻¹
Δκ _Ζ	I I I I	WW WV LEP Combination WW WW WZ WV	A [†] LA [±] Li ^{mits} CMS Li ^{mits} D0 Limit LEP Limit -0.043 - 0.043 4.6 fb ⁻¹ -0.043 - 0.051 0.7 fb ⁻¹ -0.074 - 0.051 0.7 fb ⁻¹ -0.062 - 0.059 4.6 fb ⁻¹ -0.048 - 0.048 4.9 fb ⁻¹ -0.046 - 0.047 4.6 fb ⁻¹ -0.038 - 0.030 5.0 fb ⁻¹ -0.036 - 0.044 8.6 fb ⁻¹ -0.059 - 0.017 0.7 fb ⁻¹
$\Delta \kappa_z$ λ_z	₹ I I I I	WW WV LEP Combination WW WW WW WZ WV D0 Combination	A [†] LA ⁵ Limits CMS Limits D0 Limit LEP Limit -0.043 - 0.043 4.6 fb ⁻¹ -0.043 - 0.033 5.0 fb ⁻¹ -0.074 - 0.051 0.7 fb ⁻¹ -0.062 - 0.059 4.6 fb ⁻¹ -0.048 - 0.048 4.9 fb ⁻¹ -0.046 - 0.047 4.6 fb ⁻¹ -0.038 - 0.030 5.0 fb ⁻¹ -0.036 - 0.044 8.6 fb ⁻¹ -0.059 - 0.017 0.7 fb ⁻¹ -0.039 - 0.052 4.6 fb ⁻¹
Δκ _Ζ	Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ Ţ	WW WV LEP Combination WW WW WZ WV D0 Combination LEP Combination WW WW	CMS Limits D0 Limit Constraints -0.043 - 0.043 4.6 fb ⁻¹ -0.043 - 0.033 5.0 fb ⁻¹ -0.043 - 0.051 0.7 fb ⁻¹ -0.062 - 0.059 4.6 fb ⁻¹ -0.048 - 0.048 4.9 fb ⁻¹ -0.048 - 0.048 4.9 fb ⁻¹ -0.046 - 0.047 4.6 fb ⁻¹ -0.038 - 0.030 5.0 fb ⁻¹ -0.036 - 0.044 8.6 fb ⁻¹ -0.059 - 0.017 0.7 fb ⁻¹ -0.039 - 0.052 4.6 fb ⁻¹
$\Delta \kappa_z$ λ_z	I I I I I I I I I	WW WV LEP Combination WW WW WZ WV D0 Combination LEP Combination WW WW	A ¹ LA ⁵ Limits CMS Limits D0 Limit LEP Limit -0.043 - 0.043 4.6 fb ⁻¹ -0.043 - 0.051 0.7 fb ⁻¹ -0.062 - 0.059 4.6 fb ⁻¹ -0.048 - 0.048 4.9 fb ⁻¹ -0.046 - 0.047 4.6 fb ⁻¹ -0.038 - 0.030 5.0 fb ⁻¹ -0.036 - 0.044 8.6 fb ⁻¹ -0.039 - 0.052 4.6 fb ⁻¹ -0.039 - 0.052 4.6 fb ⁻¹ -0.057 - 0.093 4.6 fb ⁻¹
$\Delta \kappa_z$ λ_z	₹ I I I I § ₹ I I I] •	WW WV LEP Combination WW WW WZ WV D0 Combination LEP Combination WW WW WW WZ D0 Combination	A ¹ LA ⁵ Limits CMS Limits D0 Limit LEP Limit -0.043 - 0.043 4.6 fb ⁻¹ -0.043 - 0.051 0.7 fb ⁻¹ -0.043 - 0.059 4.6 fb ⁻¹ -0.048 - 0.048 4.9 fb ⁻¹ -0.046 - 0.047 4.6 fb ⁻¹ -0.038 - 0.030 5.0 fb ⁻¹ -0.036 - 0.044 8.6 fb ⁻¹ -0.039 - 0.052 4.6 fb ⁻¹ -0.039 - 0.052 4.6 fb ⁻¹ -0.057 - 0.093 4.6 fb ⁻¹ -0.034 - 0.084 8.6 fb ⁻¹
$\Delta \kappa_z$ λ_z	I I I I I I I I I	WW WV LEP Combination WW WW WZ WV D0 Combination LEP Combination WW WW	A ¹ LA ⁵ Limits CMS Limits D0 Limit LEP Limit -0.043 - 0.043 4.6 fb ⁻¹ -0.043 - 0.051 0.7 fb ⁻¹ -0.062 - 0.059 4.6 fb ⁻¹ -0.048 - 0.048 4.9 fb ⁻¹ -0.046 - 0.047 4.6 fb ⁻¹ -0.038 - 0.030 5.0 fb ⁻¹ -0.036 - 0.044 8.6 fb ⁻¹ -0.039 - 0.052 4.6 fb ⁻¹ -0.039 - 0.052 4.6 fb ⁻¹ -0.057 - 0.093 4.6 fb ⁻¹
$\Delta \kappa_z$ λ_z	₹ I I I I § ₹ I I I] •	WW WV LEP Combination WW WW WZ WV D0 Combination LEP Combination WW WW WW WZ D0 Combination	A ¹ LA ⁵ Limits CMS Limits D0 Limit LEP Limit -0.043 - 0.043 4.6 fb ⁻¹ -0.043 - 0.051 0.7 fb ⁻¹ -0.043 - 0.059 4.6 fb ⁻¹ -0.048 - 0.048 4.9 fb ⁻¹ -0.046 - 0.047 4.6 fb ⁻¹ -0.038 - 0.030 5.0 fb ⁻¹ -0.036 - 0.044 8.6 fb ⁻¹ -0.039 - 0.052 4.6 fb ⁻¹ -0.039 - 0.052 4.6 fb ⁻¹ -0.057 - 0.093 4.6 fb ⁻¹ -0.034 - 0.084 8.6 fb ⁻¹

Anomalous Quartic Couplings

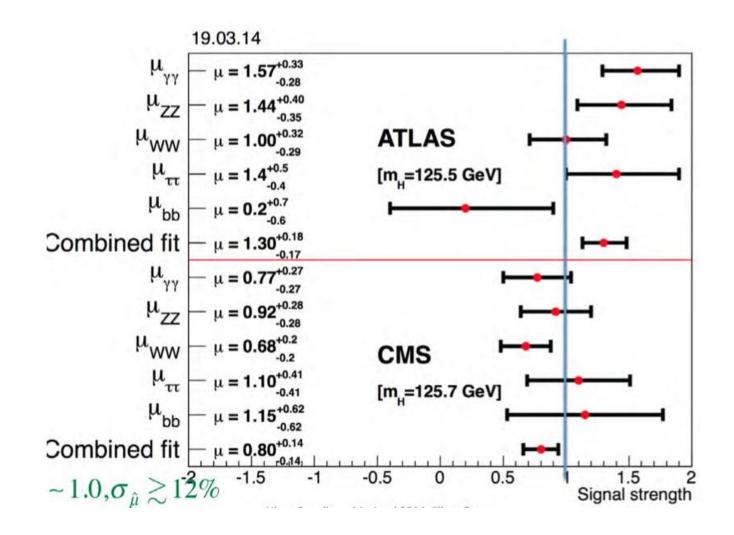
- Pure quartic contributions
 accessed through WW exclusive
 production, WWgamma and
 WZgamma
 - □ In the latter case use decay in 2j for one massive gauge boson
- □ New measurements
 - \square WWgg and WWZg
- Significantly improves over D0 and LEP



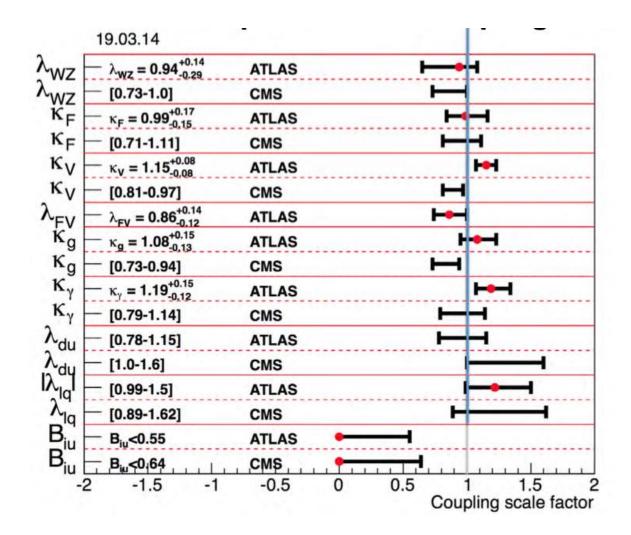
 -10^{5} -10^{4} -10^{3} -10^{2} -10 -1 1 10 10^{2} 10^{3} 10^{4} 10^{5}

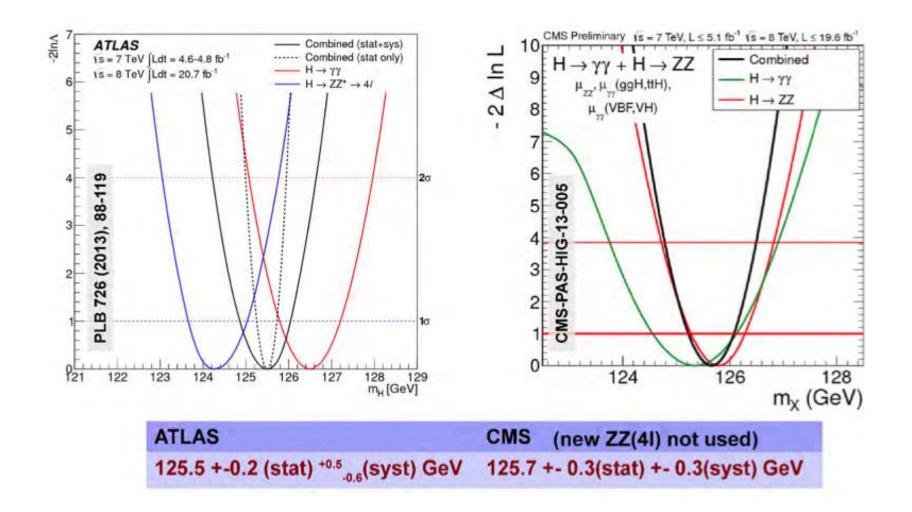

Top production

- ttbar production: precision cross sections, differential distributions, ttbar +HF, ttbar +gamma/W/Z
- World's most precise cross section: total uncertainty of 4.8%



Heavy flavour


- □ CMS and ATLAS contributes
- □ Important result in 2013:
- □ 5sigma Bs->mumu from combined CMS and LHCb result


Higgs couplings

Higgs couplings

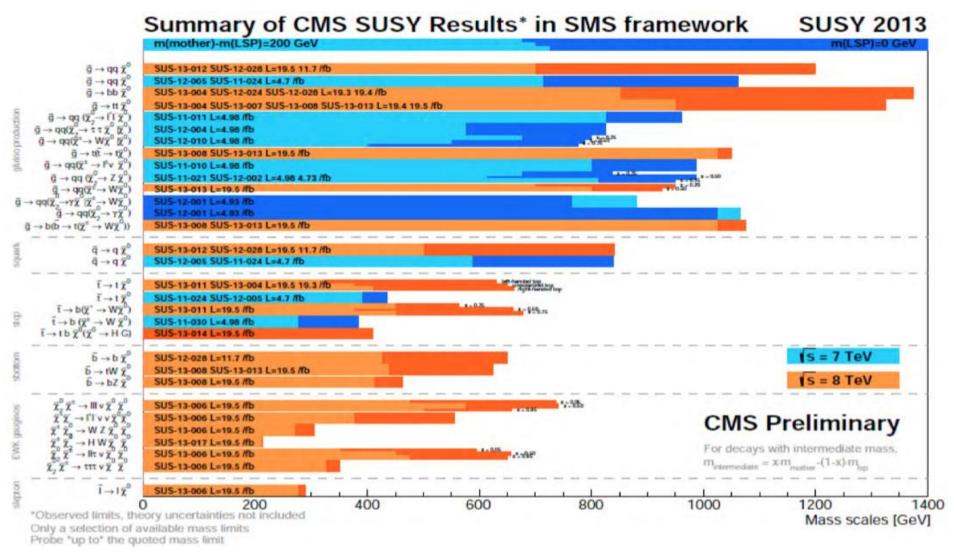
Properties

Search for BSM Higgses

- Two different approaches: "indirect" using coupling results, "direct" using targeted searches (*Thompson*).
- Limits from recent ATLAS couplings analysis:
 - Minimal Composite Higgs (MCHM)
 - Additional EW singlet
 - 2HDM
 - Simplified MSSM
 - Higgs Portal

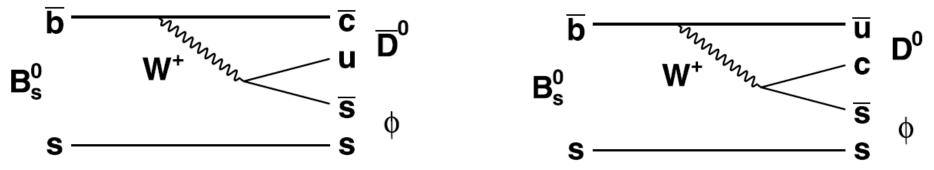
• Limits from direct Searches:

- H -> hh, A -> Zh (CMS)
- 2HDM limits (CMS)
- t -> cH (CMS) and t -> qH (ATLAS)
- MSSM H -> ττ (CMS)
- Charged Higgs (ATLAS)


No sign of BSM Higgs (yet) !

SUSY limits ATLAS

ATLAS SUSY Searches* - 95% CL Lower Limits


	Model	е. µ. т. у	late	Emiss	[L dt[fb	Mass limit		$\int \mathcal{L} dt = (4.6 - 22.9) \text{fb}^{-1}$	$\sqrt{s} = 7, 8 \text{ TeV}$ Reference
-	Model	e	Jets	T	Jradio	Massimit			Reference
Inclusive Searches	$\begin{array}{l} MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ \overline{a}\overline{a}, \overline{a} \rightarrow q\overline{a}_{1}^{C1} \\ \overline{a}\overline{z}, \overline{z} \rightarrow q\overline{a}\overline{a}_{1}^{C1} \\ \overline{z}\overline{z}, \overline{z} \rightarrow q\overline{a}\overline{a}_{1}^{C1} \\ \overline{z}\overline{z}, \overline{z} \rightarrow q\overline{a}\overline{a}_{1}^{C1} \rightarrow q\overline{a}W^{*}\overline{p}_{1}^{C1} \\ \overline{z}\overline{z}, \overline{z} \rightarrow q\overline{a}\overline{a}\overline{a}\overline{a}\overline{a}\overline{a}\overline{b}\overline{a}\overline{c}\overline{a}\overline{c}\overline{a}\overline{c}\overline{c}\overline{a}\overline{c}\overline{c}\overline{c}\overline{c}\overline{c}\overline{c}\overline{c}\overline{c}\overline{c}c$	$\begin{array}{c} 0 \\ 1 e, \mu \\ 0 \\ 0 \\ 1 e, \mu \\ 2 e, \mu \\ 2 e, \mu \\ 1 \cdot 2 \tau \\ 2 \gamma \\ 1 e, \mu + \gamma \\ \gamma \\ 2 e, \mu (Z) \\ 0 \end{array}$	2-6 jots 3-6 jots 2-6 jots 2-6 jots 2-6 jots 3-6 jots 3-6 jots 3-6 jots 2-4 jots 0-2 jots 	Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 20.3 20.3 20.3 20.3 20.3 20.3 20.3		1.7 TeV 1.2 ToV 1.1 TeV 740 GeV 1.3 TeV 1.3 TeV 1.3 TeV 1.2 TeV 1.2 TeV 1.2 TeV 1.4 TeV 1.07 TeV 800 GeV 800 GeV	[m(a)=m(a) arry m(a) arry m(a) m(c)=0.6eV m(c)=0.6eV m(c)=0.6eV m(c)=0.6eV m(c)=0.6eV targe=15 targe=15 targe=18 m(c)=0.50 GeV m(c)=0.50 GeV	ATLAS-CONF-2013-04 ATLAS-CONF-2013-04 1308.1541 ATLAS-CONF-2013-04 ATLAS-CONF-2013-04 ATLAS-CONF-2013-06 ATLAS-CONF-2013-06 ATLAS-CONF-2013-04 1209.0753 ATLAS-CONF-2012-14 1211.1167 ATLAS-CONF-2012-15 ATLAS-CONF-2012-15
g med.	$\vec{B} \rightarrow b \vec{b} \vec{k}_{1}^{0}$ $\vec{B} \rightarrow t \vec{t} \vec{k}_{1}^{0}$ $\vec{B} \rightarrow t \vec{t} \vec{k}_{1}^{0}$ $\vec{B} \rightarrow b \vec{t} \vec{k}_{1}$	0 0 0-1 e.µ 0-1 e.µ	3 b 7-10 jets 3 b 3 b	Yes Yes Yes Yes	20.1 20.3 20.1 20.1		1.2 TeV 1.1 TeV 1.34 TeV 1.3 TeV	m(\$ ²)~500 GeV m(\$ ²)~350 GeV m(\$ ²)~350 GeV m(\$ ²)~300 GeV	ATLAS-CONF-2013-061 1308-1841 ATLAS-CONF-2013-061 ATLAS-CONF-2013-061
5" gen, squarks direct production	$ \begin{array}{l} \underbrace{b_1 b_1, b_1 \to b \tilde{r}_1^0}_{b_1 b_1, b_1 \to b \tilde{r}_1^1} \\ i_1 t_1, b_1 \to b \tilde{r}_1^1 \\ i_1 t_1 (light), i_1 \to b \tilde{r}_1^1 \\ i_1 t_1 (light), i_1 \to b \tilde{r}_1^0 \\ i_1 t_1 (modium), i_1 \to b \tilde{r}_1^0 \\ i_1 t_1 (modium), i_1 \to b \tilde{r}_1^0 \\ i_1 t_1 (modium), i_1 \to b \tilde{r}_1^0 \\ i_1 t_1 (modum), i_1 \to b \tilde{r}_1^0 \\ i_1 t_1 (modum) GMSB \\ i_1 t_1 (modum) GMSB \\ i_1 t_2 (modum) J_1 + Z \\ i_1 t_1 (modum) GMSB \\ i_1 t_1 (modum) GM$	$\begin{array}{c} 0 \\ 2 \ e, \mu (\text{SS}) \\ 1.2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ e, \mu \\ 0 \\ 1 \ e, \mu \\ 0 \\ 3 \ e, \mu (Z) \end{array}$	2 b 0.3 b 1.2 b 0.2 jots 2 jots 2 b 1 b 2 b 0 no-jet/c-t 1 b 1 b	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.3 20.7 20.7 20.7	90-200 GeV	100-620 GeV GeV 50-580 GeV 50-580 GeV 320-680 GeV 500 GeV 520 GeV	$\begin{split} m(\tilde{t}_1^+)&=&0 \text{GaV} \\ m(\tilde{t}_1^+)&=&m(\tilde{t}_1^+) \\ m(\tilde{t}_1^+)&=&m(\tilde{t}_1^+)&=$	1308.2631 ATLAS-CONF-2013-00 1208.4005,1209.2102 ATLAS-CONF-2013-005 1308.2631 ATLAS-CONF-2013-005 ATLAS-CONF-2013-005 ATLAS-CONF-2013-005 ATLAS-CONF-2013-005 ATLAS-CONF-2013-005 ATLAS-CONF-2013-005
direct	$ \begin{split} \tilde{t}_{u_{i}u_{i}} \tilde{t}_{L,u_{i}} \tilde{t} \rightarrow \tilde{t} \tilde{t}_{i}^{0} \\ \tilde{t}_{u_{i}}^{-1} \tilde{t}_{i}^{-1} \tilde{t}_{i}^{-1} \rightarrow \tilde{t} \ell (\tilde{v}) \\ \tilde{t}_{i}^{-1} \tilde{t}_{i}^{-1} \tilde{t}_{i}^{-1} \rightarrow \tilde{t} \ell (\tilde{v}) \\ \tilde{t}_{i}^{-1} \tilde{t}_{i}^{0} \rightarrow \tilde{t} \ell_{i} v \tilde{t} \ell (\tilde{v}v), \ell \tilde{v} \tilde{t}_{i} \ell (\tilde{v}v) \\ \tilde{t}_{i}^{-1} \tilde{t}_{i}^{0} \rightarrow \tilde{t} \ell_{i} v \tilde{t} \ell (\tilde{v}v) \\ \tilde{t}_{i}^{-1} \tilde{t}_{i}^{0} \rightarrow \tilde{t} \tilde{t}_{i} v \tilde{t} \ell \tilde{t} \tilde{t}_{i} \\ \tilde{t}_{i}^{-1} \tilde{t}_{i}^{0} \rightarrow \tilde{t} \tilde{t} \tilde{t} \tilde{t} \tilde{t}_{i}^{0} \rightarrow \tilde{t} \tilde{t} \tilde{t} \tilde{t} \\ \tilde{t} \tilde{t} \tilde{t} \tilde{t} \tilde{t} \tilde{t} \tilde{t} \tilde{t}$	2 e, µ 2 e, µ 2 r 3 e, µ 3 e, µ 1 é, µ	00.00	Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7 20.7 20.3	85-315 GeV 125-45 180-330 GeV 4 4 4 4 3 15 GeV 4 5 285 GeV	A MARK AND A	$\begin{array}{l} m(\tilde{r}_{1}^{0}) \rightarrow 0 \ \text{GeV} \\ m(\tilde{r}_{1}^{0}) \rightarrow 0 \ \text{GeV}, \ m(\tilde{r}_{1}^{0}) + m(\tilde{r}_{1}^{0})) \\ m(\tilde{r}_{1}^{0}) \rightarrow 0 \ \text{GeV}, \ m(\tilde{r}, \tilde{r}) \rightarrow 0, \ \text{S}(m(\tilde{r}_{1}^{0}) + m(\tilde{r}_{1}^{0})) \\ m(\tilde{r}_{1}^{0}) \rightarrow m(\tilde{r}_{1}^{0}) \rightarrow m(\tilde{r}_{1}^{0}) \rightarrow 0, \ \text{S}(m(\tilde{r}_{1}^{0}) + m(\tilde{r}_{1}^{0})) \\ m(\tilde{r}_{1}^{0}) - m(\tilde{r}_{1}^{0}), \ m(\tilde{r}_{1}^{0}) \rightarrow 0, \ \text{S}(m(\tilde{r}_{1}^{0}) + m(\tilde{r}_{1}^{0})) \\ m(\tilde{r}_{1}^{0}) - m(\tilde{r}_{1}^{0}), \ m(\tilde{r}_{1}^{0}) \rightarrow 0, \ \text{S}(m(\tilde{r}) - 0, \ \text{S}(m(\tilde{r}) - 0, \ \text{S}(m(\tilde{r}))) \\ m(\tilde{r}_{1}^{0}) - m(\tilde{r}_{1}^{0}), \ m(\tilde{r}_{1}^{0}) \rightarrow 0, \ \text{S}(m(\tilde{r}) - 0, \ \text{S}(m(\tilde{r}))) \\ m(\tilde{r}_{1}^{0}) - m(\tilde{r}_{1}^{0}), \ m(\tilde{r}_{1}^{0}) \rightarrow 0, \ \text{S}(m(\tilde{r})) \\ m(\tilde{r}_{1}^{0}) - m(\tilde{r}_{1}^{0}), \ m(\tilde{r}_{1}^{0}) \rightarrow 0, \ \text{S}(m(\tilde{r})) \\ m(\tilde{r}_{1}^{0}) - m(\tilde{r}_{1}^{0}), \ m(\tilde{r}_{1}^{0}) \rightarrow 0, \ \text{S}(m(\tilde{r})) \\ m(\tilde{r}_{1}^{0}) - m(\tilde{r}_{1}^{0}), \ m(\tilde{r}_{1}^{0}) \rightarrow 0, \ \text{S}(m(\tilde{r})) \\ m(\tilde{r}_{1}^{0}) - m(\tilde{r}_{1}^{0}), \ m(\tilde{r}_{1}^{0}) \rightarrow 0, \ \text{S}(m(\tilde{r})) \\ m(\tilde{r}_{1}^{0}) - m(\tilde{r}_{1}^{0}), \ m(\tilde{r}_{1}^{0}) \rightarrow 0, \ \text{S}(m(\tilde{r})) \\ m(\tilde{r}_{1}^{0}) - m(\tilde{r}_{1}^{0}), \ m(\tilde{r}_{1}^{0}) \rightarrow 0, \ \text{S}(m(\tilde{r})) \\ m(\tilde{r}_{1}^{0}) - m(\tilde{r}_{1}^{0}), \ m(\tilde{r}_{1}^{0}) \rightarrow 0, \ \text{S}(m(\tilde{r})) \\ m(\tilde{r}_{1}^{0}) - m(\tilde{r}_{1}^{0}), \ m(\tilde{r}_{1}^{0}) \rightarrow 0, \ \text{S}(m(\tilde{r})) \\ m(\tilde{r}_{1}^{0}) - m(\tilde{r}_{1}^{0}), \ m(\tilde{r}_{1}^{0}) \rightarrow 0, \ \text{S}(m(\tilde{r})) \end{pmatrix} $	ATLAS-CONF-2013-040 ATLAS-CONF-2013-040 ATLAS-CONF-2013-020 ATLAS-CONF-2013-020 ATLAS-CONF-2013-020 ATLAS-CONF-2013-020
particles	Direct $\hat{x}_1^* \hat{x}_1^*$ prod., long-lived \hat{x}_1^* Stable, stopped \tilde{x} R-hadron GMSB, stable $\tilde{\tau}_1 \hat{x}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, GMSB, \hat{x}_1^0 \rightarrow \gamma \tilde{e}, \log -lived \hat{x}_1^0 \tilde{q}\tilde{q}_1, \hat{x}_1^0 \rightarrow q \mu (RPV)$	Disapp. trk 0 (µ) 1-2 µ 2 y 1 µ, displ. vtx	1 jet 1-5 jets	Yes Yes Yes	20.3 22.9 15.9 4.7 20.3	270 GeV 230 GeV	832 GeV 1.0 TeV	m(F ₁)-m(F ₀)-=160 MeV, r(F ₁)=-0.2 m m(F ₁)=100 GeV, 19 µs <r(g)<1000 s<br="">10-tangc:50 0.4<r(f<sub>1)-2 m 1.5 <cr<156 br(µ)="1," m(f<sub="" mm,="">1⁰)=108 GeV</cr<156></r(f<sub></r(g)<1000>	ATLAS-CONF-2013-060 ATLAS-CONF-2013-057 ATLAS-CONF-2013-058 1304.6310 ATLAS-CONF-2013-092
RPV	$\begin{array}{l} LFV \ \rho\rho {\rightarrow} \tilde{v}_{\tau} + X, \ \tilde{v}_{\tau} {\rightarrow} e + \mu \\ LFV \ \rho\rho {\rightarrow} \tilde{v}_{\tau} + X, \ \tilde{v}_{\tau} {\rightarrow} e(\mu) + \tau \\ Biinoar \ RPV \ CMSSM \\ \tilde{\lambda}_{1}^{+} \tilde{k}_{1}^{-}, \ \tilde{k}_{1}^{+} {\rightarrow} W \tilde{\lambda}_{0}^{+}, \ \tilde{\lambda}_{0}^{-} {\rightarrow} ee\tilde{v}_{\mu}, e\mu \tilde{v}_{e} \\ \tilde{\lambda}_{1}^{+} \tilde{k}_{1}, \ \tilde{k}_{1} \rightarrow W \tilde{k}_{1}^{+}, \ \tilde{k}_{1}^{+} {\rightarrow} W \tilde{v}_{e}^{+}, \ e\tau \tilde{v}_{e}, e\tau \tilde{v}_{e} \\ \tilde{k} {\rightarrow} qaq, \\ \tilde{k} {\rightarrow} \tilde{\ell}_{1}, \ \tilde{t}_{1} {\rightarrow} bs \end{array}$	$\begin{array}{c} 2 \ e, \mu \\ 1 \ e, \mu + \tau \\ 1 \ e, \mu \\ 4 \ e, \mu \\ 3 \ e, \mu + \tau \\ 0 \\ 2 \ e, \mu \ (SS) \end{array}$	7 jets 6-7 jets 0-3 b	Yes Yes Yes Yes	4.6 4.6 4.7 20.7 20.7 20.3 20.7	350 GeV	1.01.TeV 1.1.TeV 5.2.TeV 760.GeV 916.GeV 680.GeV	$\begin{array}{l} d_{111}^2 = 0.10, \ d_{1121} = 0.265 \\ d_{111}^2 = 0.10, \ d_{12121} = 0.05 \\ m(k_1) = m(k_2), \ c_{121} = c_{121} = c_{121} \\ m(k_1) = m(k_2), \ c_{221} = c_{121} = c_{121} \\ m(k_1) = m(k_2), \ c_{221} = c_{121} \\ m(k_1) = 0.06666, \ d_{1221} = 0. \\ m(k_1) = 0.066666, \ d_{1221} = 0. \\ m(k_1) = 0.06666666666666666666666666666666666$	1212.1272 1212.1272 ATLAS-CONF-2012-140 ATLAS-CONF-2013-03 ATLAS-CONF-2013-03 ATLAS-CONF-2013-03 ATLAS-CONF-2013-03
Other	Scalar gluon pair, sgluon $\rightarrow q\bar{q}$ Scalar gluon pair, sgluon $\rightarrow t\bar{t}$ WIMP interaction (D5, Dirac χ)	2 e, µ (SS) 0	4 jets 1 b mono-jet	Yes Yes	4.6 14.3 10.5	ion 100-287 GeV	abo GeV 704 GeV	incl. limit from 1110.2693 m(z)<80 GeV, limit of <667 GeV for D8	1210.4826 ATLAS-CONF-2013-051 ATLAS-CONF-2012-147

SUSY limits CMS

LHCb: observation of B_s-> D° ϕ

- □ Time-dependent analysis of the $B_s \rightarrow D^0 \varphi$ decay can measure γ and φ_s (Phys. Lett. **B 253** (1991) 483).
- □ Using the now-known sign of $\Delta\Gamma_s$, this determination can be made unambiguous (Phys. Rev. **D 85** (2012) 114015).
- A time-*in*dependent analysis can also measure γ, provided enough D⁰ final states are included (Phys. Rev. D 69 (2004) 113003, Phys. Lett. B 649 (2007) 61). This has advantages for LHCb, as it means flavour-tagging is not required.

• First step is to make the first observation of the decay, using the Cabibbo-favoured $D^0 \rightarrow K^+ \pi^-$ decay mode.