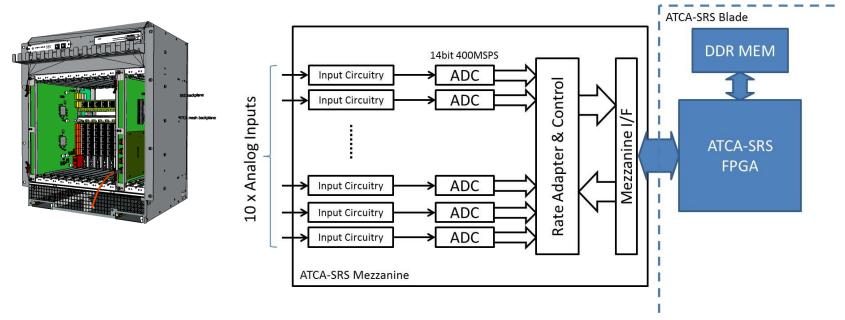

Integrating High-Speed ADCs in the SRS System for Scintillating Detectors in PW-laser Driven Physics Experiments

Sorin Martoiu (IFIN-HH, Bucharest)

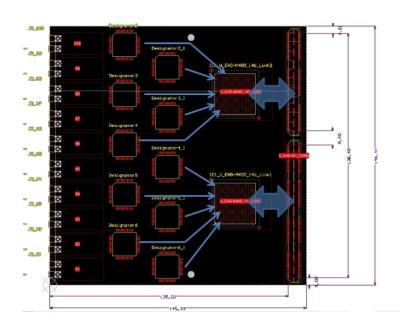

ELI-NP and CETAL

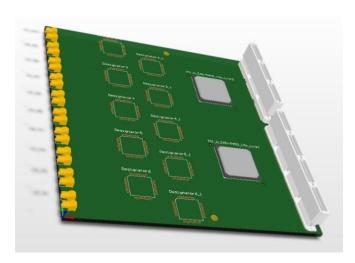
- Nuclear Physics with High-Power Lasers
- Nuclear Physics and Applications with high-brilliance gamma-beams
 - Fundamental Physics with combined laser and gamma beams



Requirements

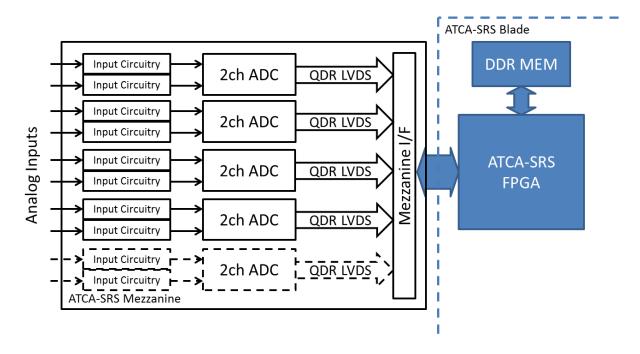
Detector type 1) gated CCD	Front-end USB	Data size MB/pulse/d etector	Number of detector s	Laser Rep. Rate		Trigger External, synchronized	Trigger jitter 0.1 ns
4 Mpixels						with laser pulse	
2) LaBr3 with PMT	Digitizer w/o PSA: >400 MS/s, 14 bits (trace of few ms)	1	10	0.01 - 10 Hz	< 100	External, synchronized with laser pulse	0.1 ns
	Digitizer with PSA: >400 MS/s, 14 bits (gamma time and energy inbetween laser pulses)	n/a	10	n/a	< 0.4	Internal: threshold on amplitude, OR External: from a CFD	
3) plastic scintillator with PMT	Digitizer w/o PSA: >1 GS/s, 12 bits (trace of few μs)	0.01	10	0.01 - 10 Hz	< 0.1	External, synchronized with laser pulse	0.1 ns
4) Ge or LaBr ₃ detectors for Decay Station	Digitizer with PSA: 100 MS/s, 14 bits	n/a	8	n/a	< 0.1	Internal: threshold on amplitude, OR External from a CFD	
	TDCs (for fast-timing experiments)	See requirements from gamma spectrometry with gamma-beam					


400 MSPS ADC Mezzanine

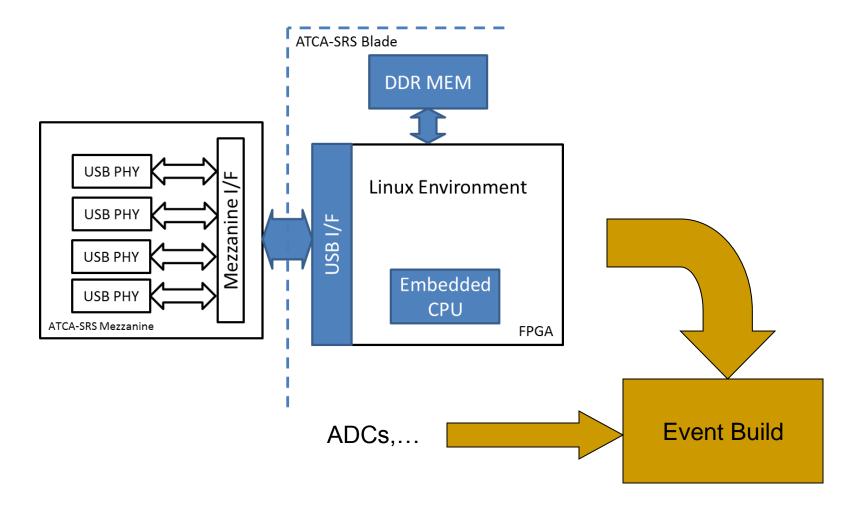

ATCA-SRS

- 10 x analog signal processors
 - Differentiale/single-ended input
 - Variable attenuation, equalization,...
- 10x 14 bit 400MSPS ADC
 - ADS5474 (Texas Instruments)

400 MSPS ADC Mezzanine


- Bandwidth Adapter circuit
 - Implementation with low-end FPGA
 - Input: 160 bit @ 400 Mbps (LVDS)
 - Output: 40 lanes @ 1600 Mbps (800 MHz DDR;
 LVDS)

1GSPS ADC Mezzanine


- 4 High-Speed Dual 12-bit ADC
 - ADC12D500RF (TI) 500MSPS dual / 1000MSPS interleaved (1ch)
 - ADC12D800RF (TI) 800MSPS dual / 1600MSPS interleaved (1ch)
 - ADC12D1000RF (TI) 1000MSPS dual / 2000MSPS interleaved (1ch)

250MSPS ADC Mezzanine

- 4(5) duap ADC circuits, up to 250 MSPS
 - □ ADS42LB49 14 bit (Texas Instruments)
 - □ ADS42LB69 16 bit (Texas Instruments)

USB Mezzanine for CCD interface

Project Status

- Feasibility study completed
- Next steps
 - Prototype production
 - Functional and performance tests
 - Possibility to implement first laser driven experimental setup at CETAL, Bucharest
- Other applications of high-speed ADC in RD51?