# Resistive Micromegas for the SDHCAL Status of on-going analysis of charge-up effects

M. Chefdeville, LAPP, Annecy RD51 CM, Feb. 6<sup>th</sup> 2014, CERN

# Overview

**×** Micromegas calorimetry at a LC

- **x** Resistive prototypes
- **x** Test beam results
- ✗ Charge-up effects

## Micromegas & gaseous calorimetry

Low multiplication factor – Narrow avalanche – Fast ion collection  $\rightarrow$  Space charge field ~ 0

 $\rightarrow$  Signal are proportional to the energy deposited in the gas  $\leftrightarrow$  *linear response* 



Mesh lies on pillars (1% dead zone)  $\rightarrow$  uniform E-field  $\rightarrow$  *Small constant term & easy calibration* High rate capability of tens of MHz/cm<sup>2</sup>  $\rightarrow$  *Barrel/endcap/forward region-compatible* Simple gas (e.g. Ar/CO<sub>2</sub>) & low voltages (500 V, 40 kV/cm)  $\rightarrow$  *No ageing* Gas gain dependence on P/T/V well known  $\rightarrow$  *Response stable with time* 

# Semi-digital hadron calorimetry

Micromegas suitable for EM & H calorimetry. In the case of Particle-Flow calorimetry:

- ✗ Alternative to Si for W-ECAL but with larger Molière radius & worse energy resolution;
- ★ <u>*Candidate for a Fe-DHCAL (ILC)*</u> and W-DHCAL (CLIC).



<u>The response of a DHCAL is saturated</u> (cell size VS  $R_M$ ) with consequences on the energy resolution. But off-line <u>compensation techniques</u> can be used to correct for it, e.g. <u>2- bit readout</u>.

### Chronology



2006-2009



2009-2012



2012-2013

Proof-of-principle

Large area (SDHCAL)









# Resistive prototypes, motivation and challenges

At shower max (in  $1x1 \text{ m}^2$  layer), for 150 GeV pions, spark probability/pion ~  $10^{-6}$ Small but a calorimeter will have 40 layers  $\rightarrow$  Avoid discharges + Simplify PCB by removing current-limiting diodes

#### Effects to minimise

Lateral spread of charge to maintain imaging capability (<u>multiplicity ~ 1.1</u>) Loss of linearity (= rate capability) for <u>"large" charge density</u>, like in shower core



# Resistive prototypes, designs

#### <u>Resistive pad + via</u>

Insulating layer, 64 µm thick

The R-layer (a few  $M\Omega/\Box$ ) is segmented into pads of same size as readout pads The charge is evacuated to ground through a via

#### Resistive line

Insulating layer, 64  $\mu$ m thick

The R-layer (a few M $\Omega$ / $\Box$ ) is patterned into strips that run over all pads

The charge is evacuated to ground on one pad board side



### Resistive prototypes, Active Sensor Unit (ASU)

#### ASU = Bulk + pad (with or w/o R-layer) + ASIC

Bulk + R-layer made @ CERN

 $4 \text{ ASIC} = 4 \text{ MICROROC} \rightarrow 4*64 = 256 \text{ channels with preamp./shaper/3 discri./RAM}$ 

Testbeam air stack

Drift gap of 3 mm, ~10 cm between prototypes 2 resistive ASU sandwiched between 3 non-resistive (or standard)

Standard prototypes have diodes on PCB, resistive ones do not.





### Testbeam setup @ DESY







MICROROC data = hits above 1 of the 3 readout thresholds

Possibility of a slow analogue readout (digitisation on readout board)

### Mesh current VS voltage at high rate, no sparks in R-prototypes

#### Gas gain varies between 1000 to 5000 (500-560 V)

Erratum previous RD51 presentation: the rate is not 5 kHz but ~ 180 kHz (over 4 cm<sup>2</sup>)



10

# Digital response: efficiency & hit multiplicity

#### Find tracks in first & last (standard) prototypes

Measure  $N_{hit}$  distribution (for every pad) in 2 resistive & 1 standard

→ Standard prototype has largest gas gain (10-20 V more in R-prototypes) → (adjusting  $V_{mesh}$ ) efficiency & multiplicity are comparable in all prototypes

 $\rightarrow$  Good spatial uniformity (1-2 % RMS)



### Charge-up effects & rate scan (reminder)

Set  $V_{mesh}$  to equalise the efficiency (95% efficiency) of R-prototypes

Standard prototypes operated @ lower efficiency (85%) to avoid sparking (can cause crashes the DAQ because of a modification of slow control inside ASIC)

Beam rate is varried between 1-200 kHz (4 cm<sup>2</sup>)

 $\rightarrow$  measure efficiency & multiplicity VS rate

Previous RD51 meeting Efficiency & multiplicity for low threshold are ~ constant with rate





### Charge-up effects & rate scan, on-going analysis

For a given variation of signal,

the resulting variation of efficiency depends on the threshold value



Thr = 0.25 MIP Thr = 0.75 MIP Thr = 1.3 MIP

 $\rightarrow$  Look at higher thresholds

#### Efficiency versus time for 3 thresholds



#### Normalised trends, resistive lines



#### Normalised trends, resistive via



#### **Conclusions**

**×** Spark protection successfully implemented

**×** Hit multiplicity still close to 1

**×** <u>Charge-up effect, analysis on-going</u>

**x** Effects seems to show up between 1-10 kHz/cm<sup>2</sup>

- ✗ Yet, preliminary results & more work needed
  → direct rate measurement from data in ASIC memory
- X Understand & model the underlying mechanisms before scaling-up the prototype area