Resistive Micromegas for the SDHCAL *Status of on-going analysis of charge-up effects*

M. Chefdeville, LAPP, Annecy RD51 CM, Feb. 6th 2014, CERN

Overview

✗ Micromegas calorimetry at a LC

- ✗ Resistive prototypes
- ✗ Test beam results
- ✗ Charge-up effects

Micromegas & gaseous calorimetry

Low multiplication factor – Narrow avalanche – Fast ion collection \rightarrow Space charge field \sim 0

 \rightarrow Signal are proportional to the energy deposited in the gas \leftrightarrow *linear response*

Mesh lies on pillars (1% dead zone) → uniform E-field → *Small constant term & easy calibration* High rate capability of tens of MHz/cm² → *Barrel/endcap/forward region-compatible* Simple gas (e.g. Ar/CO₂) & low voltages (500 V, 40 kV/cm) \rightarrow *No ageing* Gas gain dependence on $P/T/V$ well known \rightarrow *Response stable with time*

Semi-digital hadron calorimetry

Micromegas suitable for EM & H calorimetry. In the case of Particle-Flow calorimetry:

- ✗ Alternative to Si for W-ECAL but with larger Molière radius & worse energy resolution;
- ✗ *Candidate for a Fe-DHCAL (ILC)* and W-DHCAL (CLIC).

The response of a DHCAL is saturated (cell size VS R_M) with consequences on the energy resolution. But off-line compensation techniques can be used to correct for it, e.g. 2- bit readout.

Chronology

2006-2009

2009-2012

2012-2013

Proof-of-principle

Large area (SDHCAL)

Spark protection (SPLAM)

Resistive prototypes, motivation and challenges

At shower max (in 1x1 m² layer), for 150 GeV pions, spark probability/pion $\sim 10^{-6}$ *Small but a calorimeter will have 40 layers → Avoid discharges*

+ Simplify PCB by removing current-limiting diodes

Effects to minimise

Lateral spread of charge to maintain imaging capability (multiplicity \sim 1.1) Loss of linearity (= rate capability) for "large" charge density, like in shower core

Resistive prototypes, designs

Resistive pad $+$ via

Insulating layer, 64 μm thick

The R-layer (a few M Ω/\square) is segmented into pads of same size as readout pads The charge is evacuated to ground through a via

Resistive line

Insulating layer, 64 μm thick

The R-layer (a few $M\Omega/\square$) is patterned into strips that run over all pads

The charge is evacuated to ground on one pad board side

Resistive prototypes, Active Sensor Unit (ASU)

$ASU = Bulk + pad (with or w/o R-layer) + ASIC$

Bulk + R-layer made ω CERN

 $4 \text{ ASIC} = 4 \text{ MICROROC} \rightarrow 4*64 = 256 \text{ channels with preamp./shaper/3 discri./RAM}$

Testbeam air stack

Drift gap of 3 mm, \sim 10 cm between prototypes *2 resistive ASU sandwiched between 3 non-resistive (or standard)*

Standard prototypes have diodes on PCB, resistive ones do not.

Testbeam setup @ DESY

MICROROC data $=$ hits above 1 of the 3 readout thresholds

Possibility of a slow analogue readout (digitisation on readout board)

Mesh current VS voltage at high rate, no sparks in R-prototypes

Gas gain varies between 1000 to 5000 (500-560 V)

Erratum previous RD51 presentation: the rate is not 5 kHz but \sim 180 kHz (over 4 cm²)

10

Digital response: efficiency & hit multiplicity

Find tracks in first & last (standard) prototypes

Measure N_{hit} distribution (for every pad) in 2 resistive $\&$ 1 standard

 \rightarrow Standard prototype has largest gas gain (10-20 V more in R-prototypes) *→ (adjusting Vmesh) efficiency & multiplicity are comparable in all prototypes*

→ Good spatial uniformity (1-2 % RMS)

Charge-up effects & rate scan (reminder)

Set V_{mesh} to equalise the efficiency (95% efficiency) of R-prototypes

Standard prototypes operated ω lower efficiency (85%) to avoid sparking (can cause crashes the DAQ because of a modification of slow control inside ASIC)

Beam rate is varried between 1-200 kHz (4 cm²)

 \rightarrow measure efficiency & multiplicity VS rate

Previous RD51 meeting Efficiency & multiplicity for low threshold are \sim constant with rate

Charge-up effects & rate scan, on-going analysis

For a given variation of signal,

the resulting variation of efficiency depends on the threshold value

 $Thr = 0.25$ MIP $Thr = 0.75$ MIP $Thr = 1.3 MIP$

 \rightarrow Look at higher thresholds

Efficiency versus time for 3 thresholds

Normalised trends, resistive lines

Normalised trends, resistive via

Conclusions

✗ Spark protection successfully implemented

✗ Hit multiplicity still close to 1

✗ Charge-up effect, analysis on-going

 χ Effects seems to show up between 1-10 kHz/cm²

- ✗ Yet, preliminary results & more work needed \rightarrow direct rate measurement from data in ASIC memory
- ✗ Understand & model the underlying mechanisms before scaling-up the prototype area