Future Emerging Technologies (FET) in H2020

Proposal: Particle detectors for research & industry

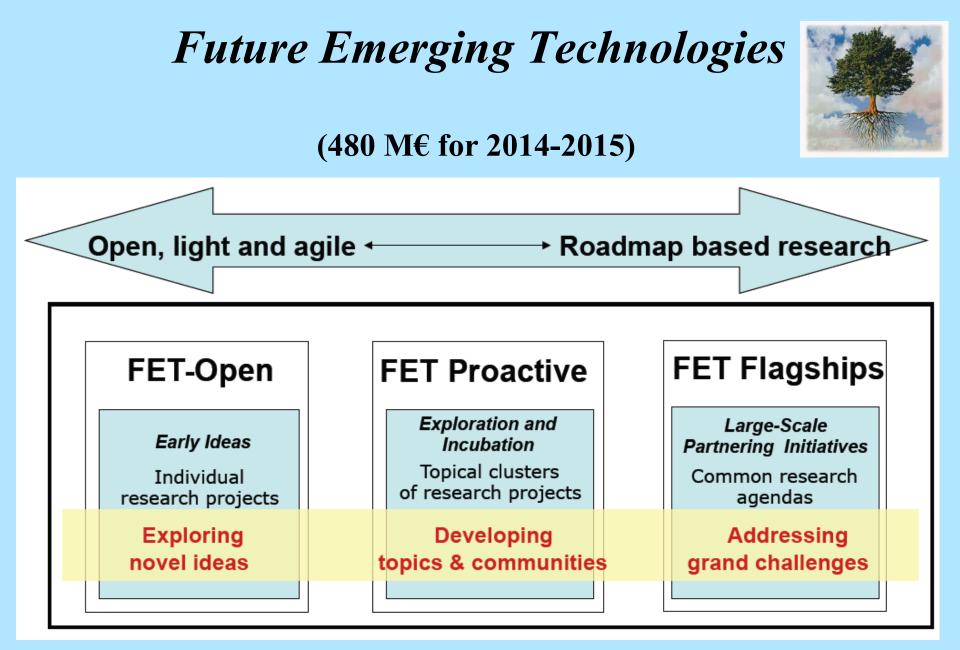
Partners: CEA-Saclay, Zaragoza, Demokritos, IPG-P, IPN-L, LSBB

Horizon2020: the EU framework

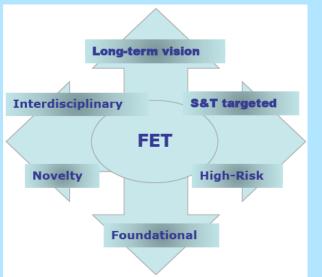
programme for research & innovation – 2014-2020

 \rightarrow approved in Dec. 2013

Continuation of FP7, but covers more domains, more ambitious, higher budget



6.1 B€



2.7 B€ 13 B€ (480 M€ for 2014-2015)

160 M€

FET-Open

- Project size: 2 to 4 M€
- 1 step submission on a 16 pages proposal
- 1st deadline: 30/09/2014 (77M€)

Excellence	Impact	Implementation
 Clarity of targeted breakthrough and its specific science and technology contributions towards a long-term vision. Novelty, level of ambition and foundational character. Range and added value from interdisciplinarity. Appropriateness of the research methods. 	 Importance of the new technological outcome with regards to its transformational impact on technology and/or society. Quality of measures for achieving impact on science, technology and/or society. Impact from empowerment of new and high potential actors towards future technological leadership. 	 Quality of the workplan and clarity of intermediate targets. Relevant expertise in the consortium. Appropriate allocation and justification of resources (person- months, equipment, budget).
Threshold: 4/5 Weight: 60%	Threshold: 3,5/5 Weight: 20%	Threshold: 3/5 Weight: 20%

Particle detectors for research & industry

Development of multi-usage MPGDs, i.e. not only driven by fundamental physics

- Taken into account in the R&D stage
- More collaboration between fundamental physics & other disciplines/industrials

MPGDs have excellent performances, but they are not adapted outside labs

- Often lack of robustness
- Require a lot of equipments
- Cost

However, there is a bunch of applications outside particle physics!

- Volcanology (IPG-P, Rennes)
- Geology (LSBB, IRSN)
- CO₂ storage/survey (Schlumberger)
- Mining exploration in boreholes (AREVA)
- Archeology (LRMH)
- Portable dosimetry (Landauer)
- Medical imaging
- Civil engineering (monitoring of structures)
- Industrial control of manufacturing products
- ...

Strengths/Weaknesses wrt FET

- <u>Multi-disciplinarity</u>: particle physics, geoscience, archeology, mining exploration, dosimetry, astrophysics, industrial control, civil engineering
- <u>Fundational & Long Term Vision</u>: many new applications, new vision of what a particle detector can do, in particular outside high energy physics
- Breakthroughs : scientifically ambitious... but technological breakthroughs?
- <u>High Risk</u>: ...?
- Novelty: « new ideas and concepts, rather than the application or refinement of existing ones »

Main tasks

- R&D side

- → autonomisation/robustness
- \rightarrow resistive and/or cylindrical micro-bulk

\rightarrow sealed multiplexed TPC

- \rightarrow potential of nano-technologies (lgor/Theo)
- $\rightarrow \dots$

Targeted applications

- \rightarrow collaboration with non-HEP institutes to prove feasibility with in situ exp.
- \rightarrow contact/interactions with industrials, one being official partner