Towards Large Single-Stage THGEM detector

L. Moleri for WIS Coimbra and Aveiro groups Project supported by RD51

Outline

- Motivation & Final goal
- 300 x 300 mm² chamber
 - Detector design
 - Experimental setup
 - o Results
 - Next steps
- Trying Argon again
- Summary

Motivation & Final goal

DHCAL

- Thin sampling element
- Large area coverage (~4000 m²)
- o 1 cm² pad readout
 - Low resolution
 - Medium rate
- Low multiplicity
- Relatively low gain ~ 2000

THGEM is a possibility: robust, simple to produce over large areas, etc

Motivation & Final goal

- Cost
 - THGEM detector cost is proportional to the number of holes
- Production
 - \circ Drilling holes takes a long time (~50 hours for 1 m²)
 - Hole quality determines the detector quality

Single-stage detector:

- o Cheaper
- Produced faster
- Less potential problems

Motivation & Final goal

Large ~ 500 x 500 mm² singlestage THGEM detector

- Stable operation
- High efficiency
- Uniform (or controlled) response

DHCAL specific

- Thin: small drift and small (or no) induction gap
- Low pad multiplicity
- Stable in Hadronic environment

Feasible according to our last test beam result

Our first 300 x 300 mm² Detector

300x300 mm² – Trieste's experience

- Production quality
- Gain Vs. thickness

 Will measure thickness carefully
- The lesson was learnt

But many differences...

- Single stage Vs. Triple stage
- Higher gain in the individual layer
- Higher operation voltage
 - o Less stable
 - Potential inter-segments discharges
- Use of resistive layers

Needs optimization

300x300 mm² - Electrodes

- Two structures
 - Double sided (induction)Single sided (WELL)
- Geometry
 - \circ a = 1 mm
 - o d = 0.5 mm
 - o t = 0.4 / 0.8 mm
 - h = 0.1 mm / 0

Production:

 Eltos followed by treatment with Polyurethane coating at Rui's

- Segmentation
 - o 6 strips 300 x ~48 mm²
 - Gap ~ 2 mm
- Support
 - Pins squared pattern 50 mm

300x300 mm² – Resistive Layers

- Graphite epoxy mixture sprayed on copper-gridded FR4
- Nominal resistivity

 ⁰ MΩ/sq
 ¹⁰ MΩ/sQ
- Measured resistivity

 Large variations
- Study the effect of resistivity variations
- Explore other types of resistive layers

300x300 mm² – Detector Design

• Flexible enough to test different configurations

- Next step: prototype #1:
 - Smaller spacers, glued to the anode / resistive layer

300x300 mm² – Detector Design

Power distribution

- So far each segment is powered with independent HV channel
- Needs optimization
 - Might affect the segmentation as well

Readout

• SRS (9 APVs)

Parallel setup MICROROC

300x300 mm² - setup

300x300 mm²- DAQ & Offline SW

- DAQ: mmdaq
- Reconstruction I: Recomm
 - Offline zero order suppression based on dedicated pedestal measurement (threshold optimization)
 - Strips geometry
- Reconstruction II: RecoPad
 - Pad builder: Converts to pad geometry
 - Cluster builder: Merge neighboring pads
 - Charge: sum of pads in a cluster
 - Position: weighted average
- Analysis: root based

300x300 mm² - Self Trigger

- Allows working with an x-ray source
- Correlates the trigger and the signal
 - Impossible to measure efficiency
 - To get clean trigger needs higher gain than to have good signal/noise separation
 - Might exceeds the dynamic range of the APV
 - High discriminator threshold cuts the signal

Choose the gain and the trigger threshold with care

300x300 mm² - Sanity check

Identify the source position

300x300 mm² - Offline analysis

Identify noisy pads

- Remove the source and look for firing pads
- The charge is not necessarily low
- Will study the origin of this pulses

For now these pads can be excluded from the offline analysis

300x300 mm² - Offline analysis

Set the parameter for the zero order suppression

- The source is located in the center of the pad
- Typical photo-electron track length in Ne/5%CH4 ~1 mm
- Expect pad multiplicity slightly higher than 1
 Supported by test beam results

pad multiplicity

Results: Uniformity

• L.Moleri - RD51 meeting

Results: Uniformity

- Small ~10% gain variations
- Small ~10% energy resolution variations
- Small gain difference
 between the two strips
 - Slightly different operation voltage?
 - Gain shift with time ?
 - To be understood
- Can be corrected

7/2/14 • 20

Results: Uniformity

- The gas gain as a function of the THGEM operation voltage was measured in different points
- The different points shows similar response

gain curves

300x300 mm² - Next steps

Change configuration

- 1 mm induction gap
- Multiplication in the induction
- Resistive layer

- Long term stability
- Discharge probability
- Argon based gas mixtures
- Efficiency with cosmic rays

• Test beam ...

Re-do uniformity measurement

Trying Argon again

- As expected, much higher voltages are needed for the same gain in Ar/5%CH4 compared to Ne/5%CH4
- Gain of order 1000 seems to be the limit of the ~0.3 mm THGEM electrode with no rims

Summary

- First single-stage 300x300 mm² THGEM detector is assembled and working properly
- Fe55 x-ray signal are recorded with the SRS in selftrigger mode
- The spectra in different points of the detector is well separated from the noise at a gas-gain of ~2000
- Gain uniformity and energy resolution uniformity of order 10% are recorded
- Tests of the response to highly ionizing particles is on course
- Second setup is being built in Coimbra
- Many things to do...

Backup

From comparative to quantitative study

- So far tested many different structures and configurations
 - Double sided:
 - With & without multiplication in the induction gap
 - WELL, RWELL, SRWELL, RPWELL
 - o Rim & no rim
- Choose 1 or 2 promising configurations
 - Quantify response
 - Define tolerances
 - Find parameters of impact

From comparative to quantitative study – Long term behavior

Surface resistance measurement

The surface resistivity is measured within each 1cm² pad

From comparative to quantitative study – Next steps

- Correlate and correct gain measurement with respect to external parameters
 - Temperature, pressure, humidity