ION MOBILITY MEASUREMENT IN GASES

ANDRÉ CORTEZ

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS

RUA LARGA PHYSICS DEPARTMENT UNIVERSITY OF COIMBRA 3000 COIMBRA, PORTUGAL E-MAIL: ANDRE.CORTEZ@COIMBRA.LIP.PT

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTICULAS

INTEREST AND APPLICATIONS

OUTLINE

- Basic concepts
- Experimental Setup
 - o GEM: The Key to Ion Mobility Measurements
 - Working Principle
 - Results and Discussion
 - Ion Mobility Measurements in Rare Gases
 - Results: Ar, Kr, Xe
 - Ion Mobility Measurements in Gaseous Mixtures
 Results: Xe-N₂ Ar-C₂H₆
 - Discussion
 - Ion Identification Process
 - Limitations: Impurities
 - Limitations: Space-Charge Effects
- Conclusions

BASIC CONCEPTS

Let us consider a group of ions moving in a gaseous medium under the influence of a uniform electric field...

GEM: THE KEY TO THE ION MOBILITY MEASUREMENTS

Inventor: Fabio Sauli, CERN, 1997

lon source

- Allows to limit the variety of ions produced by changing the voltage across the GEM.
- Ions' initial position is known with great accuracy.

EXPERIMENTAL SETUP: WORKING PRINCIPLE

(Neves, Conde and Távora, 2007)

EXPERIMENTAL SETUP: WORKING PRINCIPLE

ION MOBILITY MEASUREMENTS

(Neves, Conde and Távora, 2011; Neves et al., 2011)

13th RD51 Collaboration Meetieng (Td)

RESULTS: ION MOBILITY

(Neves, Conde and Távora, 2010; Neves et al., 2011)

RESULTS: ION MOBILITY

(Neves, Conde and Távora, 2010; Neves et al., 2011)

10

RESULTS: ION MOBILITY

(Neves, Conde and Távora, 2010; Neves et al., 2011)

The origin of the atomic and dimer rare gas ions...

The origin of the atomic and dimer rare gas ions...

Reactions

While the atomic rare gas ions have one common origin...

the dimer rare gas ions have two distinct origins...

The origin of the dimer rare gas ions...

(1)

The origin of the dimer rare gas ions...

Reactions

At our working pressures (higher than 6 Torr) the reactions responsible for the appearance of the observed ions are..

(2)
$$\operatorname{Rg}^+ + 2\operatorname{Rg} \rightarrow \operatorname{Rg}_2^+ + \operatorname{Rg}_3$$

(3-body reaction)

ION IDENTIFICATION: XE-N₂

Xe-N2 was studied for the NEXT Experiment...

Which ion are we observing?

EXAMPLE 2

ION IDENTIFICATION PROCESS

ION IDENTIFICATION PROCESS

18

ION IDENTIFICATION: XE-N₂

Xe-N2 was studied for the NEXT Experiment...

Which ion are we observing?

EXAMPLE 2

RESULTS XE-N₂

EXAMPLE 2

13th RD51 Collaboration Meeting

DISCUSSION: XE-N₂

EXAMPLE 2

ION IDENTIFICATION: AR-C₂H₆ EXAMPLE 1

Which ions are we observing?

RESULTS AR-C₂H₆

EXAMPLE 1

 $E/N = 15 \, Td$ P = 8 Torr C₂H, 0.700 0.750 0.800 0.850 0.900 0.950 0.650 Ion's Drift Time (ms) For Vgem = 20 V $K_{01} \sim 2.57 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$ $C_{2}H_{6} + e \rightarrow C_{2}H_{6}^{+} + e \\ -> C_{2}H_{5}^{+} + H + e \\ -> C_{2}H_{3}^{+} + H + H_{2} \\ -> C_{2}H_{3}^{+} + H + H_{3} \\ -> C_{3}H_{3}^{+} + H \\ -> C_{3}H_{3}^{+}$ $\begin{array}{c} -> C_{2}H_{2}^{+} + 2H_{2} \\ -> CH_{3}^{+} + CH_{3} \end{array} \xrightarrow{2} \begin{array}{c} 0.07 \\ 0.03 \end{array} \xrightarrow{2} \begin{array}{c} C_{3}H_{1}^{+}(n:7,8,9) \\ C_{4}H_{1}^{-}(n:7,9,10,12) \end{array}$

 C_2H_6

13th RD51 Collaboration Meeting

RESULTS AR-C₂H₆

EXAMPLE 1

13th RD51 Collaboration Meeting

DISCUSSION: AR-C₂H₆

EXAMPLE 1

Discussion

(Charge Transfer Reaction)

ION MOBILITY STUDY LIMITATIONS: IMPURITIES

ION MOBILITY STUDY LIMITATIONS: SPACE-CHARGE EFFECTS

CONCLUSIONS

- This technique has allowed us to make **ion mobility measurements** in several gases.
- This technique may also be used to measure some reaction rate constants (although not presented).
- A GEM is used to produce the ions. The ions' initial position is known with great precision. The number and type of ions can be controlled by varying the GEM voltage.
- Although this technique doesn't provide **direct identification** of the ions, using a different method we were able to identify the group of ions present.
- **Impurities** and **space-charge** effects have to be taken into consideration when analyzing the experimental results.

- This work was supported by FCT through the following projects CERN/FP/123613/2011 - Prof. Dr. João Barata CERN/FP/116392/2010 - Prof. Dr. Rui Marques
- I would like to thank C.A.N. Conde, F.I.G.M. Borges, F.P. Santos, J.A.S. Barata, P.N.B. Neves, A.N.C. Garcia, A.M.F. Trindade, L.M.N. Távora, T.H.T.V. Dias, J. Escada and P. Encarnação for their contribution to this work.

Thank you!

MIXING LANGEVIN LIMIT WITH BLANC'S LAW

REACTION RATE MEASUREMENTS $Rg^+ + 2Rg \xrightarrow{\beta} Rg_2^+ + Rg$

 $Rg^{+} + 2Rg -> Rg_{2}^{+} + Rg$

 $d[Rg^{+}]/dt = -\beta[Rg^{+}][Rg]^{2}$

 $[Rg+](t)=[Rg+](0)exp(-\beta N^{2}t)$

[Rg⁺](t) is proportional to the area of the atomic ion gaussian.

[Rg+](0) is proportional to the

Depends on:

Temperature

RESULTS: REACTION RATE Rg⁺ + 2Rg $\stackrel{\beta}{\rightarrow}$ Rg₂⁺ + Rg

Ne: $\beta = (5.6 \pm 0.1) \times 10^{-32} \text{ cm}^6 \text{s}^{-1}$

Ar: $\beta = (1.2 \pm 0.2) \times 10^{-31} \text{ cm}^6 \text{s}^{-1}$

Kr: $\beta = (2.1 \pm 0.9) \times 10^{-31} \text{ cm}^6 \text{s}^{-1}$

Xe: $\beta = (1.5 \pm 0.2) \times 10^{-31} \text{ cm}^6 \text{s}^{-1}$

(Neves, Conde and Távora, 2010)

CANDIDATE IONS IDENTIFICATION

13th RD51 Collaboration Meeting