Intrinsic position resolution of gaseous detectors for X-ray photons: simulation results from Degrad

C.D.R. Azevedo¹, S. Biagi², R. Veenhof², A.L.M. Silva¹, P.M.M. Correia¹ and J.F.C.A. Veloso¹

¹ I3N - Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal ² Uludağ University, Faculty of Arts and Sciences, Physics Department, Bursa – Turkey

X-ray Position Resolution in gas

- Where is the problem?
 - Photoelectron range
 - Electron scattering
 - Fluorescence photons
- Photon energy dependence
- Gas dependence

Radiation Interaction With Matter

Photoelectric absorption

http://www.amptek.com/xrf.html

De-excitation Processes

- Radiative processes
 - Fluorescence photon
- Nonradiative processes
 - Auger electron
 - Shell electron transition
 - Coster-Kronig
 - Subshell electron transition
 - Shake-off
 - Electron emission due to potential change

http://www.amptek.com/xrf.html G. Zschornack. Handbook of x-ray data, Springer, 2007

4/25

Simulation tool: DEGRAD

- Calculates the cluster distribution in gas mixtures:
 - Minimum ionizing particles.
 - Delta electrons
 - Photons
 - Photoelectric effect, Compton scattering, pair-prodution and Rayleigh scattering.
- Electric and magnetic fields
- Cascade model
 - Auger and Coster-Kronig, Fluorescence, Shake off
- Electron scattering:
 - Rotational, vibrational, excitation and ionization scattering
 - Bremsstrahlung to be included in March upgrade.
- Output
 - Fano factors for electrons and excitations
 - Cluster size and cluster size spatial distribution
 - W value

http://consult.cern.ch/writeup/magboltz/

http://indico.cern.ch/getFile.py/access?contribId=14&sessionId=5&resId=1&materialId=slides&confId=245535

DEGRAD Calculations conditions

- Gas:
 - He, Ne, Ar, Kr, Xe
 - 20 °C, 760 Torr
- 110000 events
- Photon energy
 - 1-60 keV in 1 keV step
- No magnetic field
- 1 kV/cm electric field
 - Direction parallel to the photon incoming direction
- Stop energy
 - I eV below the lowest excitation energy*

* Values from Magboltzl

Geometry

- Infinite (photons interacting without distance restriction)
- Detector
 - 10x10x1 cm³
 - Photon interaction point in the center of the detector
- Each single event:
 - Primary electron position distribution
 - X and Y Position obtained from the averaged distribution
 - Number of primary electrons produced (energy distribution)
- Image
 - Reconstructed from the detected position distribution (2D histogram)
 - All energies considered (full spectrum), including fluorescence photons
 - Position resolution obtained from the FWHM of a Gaussian distribution

8/25

Neon

13/25

14/25

15/25

- Influence of the detector dimension (drift)
 - Electron loss to the detectors walls

Influence of the K shell (Argon)

Intrinsic position resolution of gaseous detectors for X-ray photons: simulation results from Degrad

• Influence of the K and L shells

Intrinsic position resolution of gaseous detectors for X-ray photons: simulation results from Degrad

Infinite vs Detector Geometry

Infinite vs Detector Geometry

Intrinsic position resolution of gaseous detectors for X-ray photons: simulation results from Degrad

Intrinsic position resolution of gaseous detectors for X-ray photons: simulation results from Degrad

Conclusions and Future Work

- Preliminary results:
 - Energy resolution and position resolution degradation depending on the detectors geometry
 - Kr competes with Xe in the region 15-35 keV
 - BUT: image performance also depends on the statistics
 - Absorption probability should be included
- Experimental results needed
- Improve the position resolution by using clusterization algorithms (pixelated detectors).