PiggyBack: sealed MicroMEGAS with external read-out electronics

D. Attié, C. Blondel, <u>L. Boilevin-Kayl</u>, D. Desforges, E. Ferrer Ribas, Y. Giomataris, O. Guevin, F. Jeanneau, O. Limousin, A. Meuris, R. de Oliveira, T. Papaevangelou, A. Peyaud, A. Teixeira

1

CERN and IRFU (CEA-Saclay)

Outline and statut report

Motivation and reminder of previous presentation

- Characterization of the new chamber in normal and sealed operation
- Characterization of new bulks

- Set-up with new high-tech read-out electronics
- First results of the coupling to electronics

Conclusions and outlook

Reminder: resistive MicroMEGAS

Development of PiggyBack resistive MicroMEGAS

Why ? \rightarrow To reduce sparking and to protect the detector

How ? \rightarrow Thin resistive layer deposited on an adequate insulator

Detector dissociated from read-out plane, so why not :

→ Couple it to \neq electronics ? → Work in sealed operation ?

Reminder: evolution of PiggyBack

- HV connectors outside
- Ceramic partially outside
 - Made in aluminium
- PCB Board under ceramic layer

→ Verify the resistive layer concept
→ Good performances in normal mode

- HV connectors inside
- Ceramic totally inside
- Made in stainless steel
- Uncovered ceramic layer
 - → Very low outgassing
 → Robust and versatile

Bulk technology on ceramic

 \rightarrow Amplification field depends on two voltages!

Set-up

Performance expected:

- Electron transparency: a large flat curve where gain ≥ 95% of max gain
- Gain $\geq 10^4$
- Energy resolution: \simeq 20-26% (for 5.9 keV)

And the most important one: good stability of gain for several days!!!

Electron transmission

- Evolution of the position of the main peak with the electrical ratio
- Fixed amplification field, evolving drift field

Electron gain

- Keep working with voltages verifying the optimized transmission
- Increase gain until apparition of sparks

Energy resolution

- Relation used : $R = 2.35 \sqrt{\frac{w}{E}(F+b)}$ with E = 5.9 keV
- Fit with ROOT, considering the two gaussians from Argon spectrum

q

End performance characteristics

→ The new chamber meets the expected performance in normal operation

Stability in sealed operation

Evolution of gain and energy resolution during several days:

 \rightarrow Important gas leaks

Solutions:

- \rightarrow Torr Seal glue on HV connectors
- \rightarrow New nuts for the mechanics

→ The new chamber is now leak-proof enough

Environmental study

Mixing ratio	$C_{\rm P}$ (1/mbar)	$C_{\rm T}~(1/{\rm K})$
80/20	-0.46	1.50
90/10	-0.59	1.91
95/5	-0.68	2.18

Adloff et al., Environmental study of a Micromegas detector

→ We cannot neglect the evolutions induced by the environment

Coupling to high-tech electronics

Why?

- Low noise, very good resolution, radiation hardness, low cost,...
- Could work at normal and high temperature
- Improved performance for space missions

How?

- ightarrow Put the electronics at the bottom of the ceramic layer
- ightarrow Signal transmission by capacitive transmission

A powerful detector camera: Caliste

- Detector above made in CdTe
- Very compact and robuste
- Optimised for space missions

Validation	Caliste HD
Noise performance	SIMULATION 25e-+ 5.5 el./pF rms at 13 µs, 1 pA
Spectral resolution (1.2 keV fwhm @60 keV	SIMULATION <900 eV at 60 keV, -20°C
Low threshold	SIMULATION <2 keV, -20°C
Radiation hardened design	Yes
SEL LETASIC	65 MeV.cm ² .mg ⁻¹ (TBC) 9 MeV.cm ² .mg ⁻¹ (TBC)

- Read-out in 256 pixels
- No dead-space
- Made of 8 eight programmable ASICs

Features	Caliste HD
Dimensions of the 3D block	10 x 10 x 20.7 mm3
Electrical I/F Pin grid array	4 × 4 (1.27 mm pitch)
Number of pixels	256 (16 × 16)
Pixel pitch	625 µm
Guard ring width	20 µm
Number of ASIC	8
ASIC version	IDeF-X HD (32 channels)
Slow control	Yes
	3.3V

And its front-end electronics

Architecture of one IDeF-X HD ASIC:

Injection of signals in one ASIC

Test with stopped signal: two breaks (40s-50s and 80s-100s) with fixed amplitude (10mV)

Test with various signal: modification of the amplitude (20, 10 and 15mV) after the breaks

Set up of coupling electronics

First results on coupled detector

Conclusions and outlook

- Resistive MicroMEGAS were compatible with read-out electronics
- This coupling is working thanks to capacitive transmission
- Signals from a pulser have been successfully injected and observed
- First picture of the iron source acquired!

Possibility to build up an imaging spectrometer in the soft X-ray domain!

So, maybe, in the future,...

Thank you for your attention

question? [20]

References

Resistive MicroMEGAS and PiggyBack:

A Piggyback resistive Micromegas Attié, D.; Chaus, A.; Colas, P.; Ferrer Ribas, E.; Galan, J.; Giomataris, I.; Iguaz, F.J.; Gongadze, A.; De Oliveira, R.; Papaevangelou, T.; Peyaud, A. JINST (2013) 8 C11007

• Environmental study:

Environmental study of a Micromegas detector Adloff, C.; Chefdeville, M.; Espargilière, A.; Gaglione, R. LAPP-TECH-2009-03

• Caliste HD:

Caliste HD: A new fine pitch Cd(Zn)Te imaging spectrometer from 2 keV up to 1 MeV Meuris, A.; Limousin, O.; Gevin, O.; Lugiez, F.; Le Mer, I.; Pinsard, F.; Donati, M.; Blondel, C.; Michalowska, A.; Delagnes, E.; Vassal, M.-C.; Soufflet, F., IEEE NUCLEAR SCIENCE SYMPOSIUM - CONFERENCE RECORD, 2011

• IDeFX-HD:

IDeF-X HD: A low power multi-gain CMOS ASIC for the readout of Cd(Zn)Te detectors Michalowska, A.; Gevin, O.; Lemaire, O.; Lugiez, F.; Baron, P.; Grabas, H.; Pinsard, F.; Limousin, O.; Delagnes, E. IEEE NUCLEAR SCIENCE SYMPOSIUM - CONFERENCE RECORD, 2010