

Characterisation of Micromegas+GEM amplification for HARPO

- The HARPO detector concept
- Test configuration
- Gain measurements
- Experimental results
- Conclusions

HARPO

- TPC for measurement of polarised gamma rays
 - e⁺e⁻ conversion (MeV~GeV)
 - Various astrophysics applications (in space)
 - Low multiple scattering => high angular resolution
 - Sensitive to linear polarisation
 - High pressure gas for higher conversion probability
- Demonstrator
 - 30cm cubic TPC
 - μ M+2GEM amplification (not enough gain at 2bar with μ M only)
 - Up to 5bar argon based gas
- Project LLR+Irfu, funded by P2IO and ANR

rfu - CEA Saclay nstitut de recherche

sur les lois fondamentales

de l'Univers

Test configuration

setup tests μM + 2GEM (CEA, 12/2013)

Test configuration

- Plexiglas test box
- 1bar Ar:isobutane (95:5)
- ⁵⁵Fe source
- 5.9 keV X ray can convert in one of 3 regions
- 2.7 keV escape peak
 => up to 6 peaks
- By setting the GEM voltages to zero, we can effectively remove the top regions

Effective gain

• Micromegas

- intrinsic gain = $g_{\mu M}(V_{mesh}) \sim \exp(V_{mesh})$

- transparency =
$$\mathcal{T}(E_{drift})$$

 $g_{\mu M}^{eff} = g_{\mu M} (V_{mesh}) \mathcal{T}_{\mu M} (E_{drift})$

• GEM

- intrinsic gain $g_{GEM}(V_{GEM}) \sim \exp(V_{GEM})$
- collection efficiency = $C(E_{drift})$
- extraction efficiency = $\mathcal{E}(\mathbf{E}_{\text{trans}})$ $g_{GEM}^{eff} = \mathcal{E}_{GEM}(E_{\text{trans}})g_{GEM}(V_{GEM})\mathcal{C}_{GEM}(E_{drift})$

- E_{trans} and E_{drift} are the fields above and below the MPGD. They will be replaced by the corresponding value in our configuration
- *T*, *E* and *C* should depend on E/V_{MPGD}, the relative variations of V_{MPGD} in our test is too small to have any effect on our measurements and will be ignored

Total effective gain

$$\begin{split} g_{total}^{eff} &= g_{\mu M}^{eff} \times g_{GEM^{b}}^{eff} \times g_{GEM^{t}}^{eff} \\ &= (g_{\mu M} \mathcal{T}_{\mu M}) \times (\mathcal{E}_{GEM}^{b} g_{GEM}^{b} \mathcal{C}_{GEM}^{b}) \times (\mathcal{E}_{GEM}^{t} g_{GEM}^{t} \mathcal{C}_{GEM}^{t}) \\ &= g_{\mu M} (V_{mesh}) \mathcal{T}_{\mu M} (E_{trans}^{b}) \\ &\times \mathcal{E}_{GEM} (E_{trans}^{b}) g_{GEM}^{b} (V_{GEM}^{b}) \mathcal{C}_{GEM} (E_{trans}^{t}) \\ &\times \mathcal{E}_{GEM} (E_{trans}^{t}) g_{GEM}^{t} (V_{GEM}^{b}) \mathcal{C}_{GEM} (E_{drift}^{t}) \end{split}$$

This factorisation formula is well confirmed by the experimental data

Measured spectrum Micromegas + 1GEM

Without gain on the top GEM, we only observe the peaks of the two lower regions

Measured spectrum Micromegas + 2GEM

There can be up to 5 peaks, and cosmic and pileup backgrounds are impossible to describe. The following results only use the main peaks (best fitted), which were checked by eye.

Effective gain measurements

- Measurements were done to check the dependency of the effective gain with the different fields
- Each run was done within 1 hour, varying only one field (V_{mesh}, E_{trans}^b, V_{GEM}^b, E_{trans}^t, V_{GEM}^t or E_{drift})
- Each run was normalised to cancel the effects of other parameters, as well as gas variations

Variation with V_{MPGE}

(intrinsic gain)

- The gain (position of the main peak) is shown for different values of V_{MPGD}
- Clear exponential dependency for both μ M and GEM
- The slope does not depend on other parameters

Variations with E_{trans}

- Measurement of total gain (main peak position), normalised for E_{trans}=250V/cm
- We observe the combined effect of μ M transparency and GEM extraction efficiency
- The behaviour is independent of the other fields and of the GEM used

- Measurement of total gain (main peak position), normalised for $E_{trans} = 250V/cm$
- We observe the combined effect of μ M transparency and GEM extraction efficiency
- The behaviour is independent of the other fields, and of the GEM used

- By taking the ratio of the peaks above and below the GEM, we cancel the effect of the other MPGD and get a measure of g^{eff}_{GEM} .
- We cannot maximize the GEM extraction efficiency in our voltage range (no plateau is reached)

- By powering only the micromegas, we can measure the micromegas transparency only
- We are limited by the low micromegas gain
- The factorisation of $\mathcal{T}_{\mu M}$ and \mathcal{E}_{GEM} is confirmed
- GEM extraction and micromegas collection seem to cancel each other

- We can easily measure the GEM collection efficiency from the main peak position (1) and the peak ratio (2) vs E_{drift}
- The collection efficiency is maximal on most of our voltage range

- Experimental measurements confirm the factorisation of the gain dependencies with the different fields
- The most stable field region is between 10 and 1000V/cm for all the fields
- The gain will also depend on the gas parameters (pressure, temperature, composition)

Absolute GEM gain

- From the ratio of the peaks of X-ray conversion above and below the GEM, we obtain an absolute measure of the gain
- More fitting errors
- Exponential dependency is still visible, even for gains close to 1
- The maximum measured GEM gain is ~30, but cannot be seen with this method due to the dynamic range of the digital electronics (MCA)

Other effects : charge resolution

- With fixed total voltage, the GEM gain is stable (as expected)
- the peak resolution gets slightly worse for low gain on the top GEM 2014-01-13

Other effects : diffusion

IR

- We want to maximise the transverse diffusion is the transfer regions
 - spread the charge
 - improve space resolution
- The transverse diffusion does not vary in our field range (50~1000V/cm)

- Amplification with micromegas and GEM for HARPO was succesfully tested. All the MPGD provided by CERN worked well
- The dependencies on the fields are well understood
 - factorisation of gain with transparency, extraction and collection efficiencies is valid in the field values considered
 - large freedom for the choice of fields

Conclusions

- We did not reach any gain limitation
 - GEM gain up to ~30
 - micromegas gain up to ~2000
 - total gain up to \sim 40,000

Outlook

- The MPGDs were installed in the TPC, tests with cosmic rays are starting
 - gain characterisation at P=1bar (comparison with test box results), P=2bar, P=5bar?
- Test in polarised photon beam scheduled for autumn 2014 at NewSubaru accelerator, Japan
 - performance study for polarisation measurement

Many thanks to R. de Oliveira et al. (CERN workshop), L. Ropelewski et al. (RD51 lab @ CERN)

Extra result: Space dependency

Remarks about the electric setup

- GEM electrodes are coupled to limit the voltage in case of trip
 - current limitation will limit the voltage
- Each of the 9 GEM sectors is connected through a protection resistance of $10M\Omega$
 - the opposite electrode is connected through a 1MΩ (~10MΩ/9) resistance to get the two electrodes to discharge at a similar speed

Calibration

- The detector is replaced by a 2.2pF capacitance
- A square signal with fixed amplitude U is injected to simulate a charge Q : n_exq_e=Q=CU

$$n_{e} = C/q_{e} \times U$$

 $n_{e} = 13750 \times U [mV]$

