

QC on small NSW prototypes current production

Fabian Kuger¹

¹University of Würzburg, Germany

Februar 5th 2014 13th RD 51 Collaboration Meeting 2014 (WG4) - CERN

The small NSW prototype

During the NSW upgrade the first layer of the ATLAS forward muon system will be equipped with Micromegas.

A 'small' (120x50 cm²) MM quadruplet prototype, under construction, will be installed on the current SW.

It follows the NSW MM construction baseline and consists of -tow doublets in back-to-back configuration

- two eta & two stereo boards per quad.
- -1024 strips per board (415µm pitch) -With a total thickness <8cm, and

Ideal circumstances to invent, test and improve QC tools, setups and methods.

The results of this QC run can provide vital information for supplying industries.

Steps in PCB production & QC

Additional: QC on panels (flatness, deformation...) and meshes during production assembles modules (gain uniformity, tightness ...)

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

QC on PCBs

QC on PCBs

Position of precision target C:

Targets in proximity to reference point A are within 50µm to layout position.

February 6th 2014

13th RD51 Collaboration meeting 2014 - CERN

QC on PCBs

Point F Position (relative to A)

For the more distant targets two groups of point can be identified: \rightarrow PCB 1-4 (eta), PCB 5-8 (stereo): Both board types (masks) behave different \rightarrow Deviation in the order of 0.2- 0.3‰ (200-300µm/m)

QC on PCBs

Besides systematic dimension deviations local defects on the PCBs are a QC issue:

Defect: Interconnected strips

Damaged strip, huge width variation

Repaired lines are straight, width variations are small

Strip is broken \rightarrow dead channel

- Systematic deviations in the order of 200 300µm/m are visible, pointing to a thermal expansion effect (board ~ 15-20µm/m K, mask ~ 60-70µm/m K)
- Local reproducibility (same mask, same prod. batch) is in the order of \pm 50 μm
- \rightarrow Targets can not be used to drill alignment holes
- → Stating constrains (e.g. temperature, humidity) will be necessary to improve the board quality
- Number of (repaired) shortcuts is already acceptable, Quality of repair was very well in average, one dead channel in 8 boards observed
- \rightarrow Experience and classified pictures can be used to set up constraints

QC on resistive foils

Very preliminary / improvised setup to map the resistivity of the Kapton foils produced with sputtering, addresses:

- in homogeneities / systematics
- nominal values (stated by producer)
- comparability of the foils

Main problem in this simple setup:

Position and contact shape of the sensor tip is not best suited for the measurement

13th RD51 Collaboration meeting 2014 - CERN

QC on resistive foils

HV connector

	Posistivity values - foil 2, side B				F	oil 3 Side I	3			
	along lines of equal distance to HV contact		8	7	6	5	4	3	2	1
50.0			40cm	35cm	30cm	25cm	20cm	15cm	10cm	5cm
45.0		" A			42.4	29.2	24.0	21.7	17.8	14.6
g 40.0	25cr	n B			21.4	20.3	18.4	17	15.5	13.4
₹ 30.0		m C			22.5	20.0	18.3	17.2	15.7	13
25.0	15cr	m D		26.6	21.1	18.5	17.1	16	14.4	12.6
20.0 ar		E		25.7	22.3	20.7	18.8	17.4	15.9	14
15.0	100	F	37.7	25.0	22.4	20.6	19.3	18.1	17.2	14.6
20.0	A B C D E F G 5cm	G	45.2	39.2	34.6	29.2	29.3	25.6	27.1	17.2

HV connector

QC on resistive foils

'Normalized' results along Line D (Side A) - comparison of different foils -

'Normalized' by dividing the measured resistivity values [M Ω] by the nominal resistivity value per length [M Ω /cm], as stated by Atsuhiko.

These values should be only geometry/position dependent!

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

- Overall resistivity variations are acceptable!
- The resistivity pattern is as expected (according to PSpice simulations)
- Some local problems with the pattern (optically) and the attachment of the Carbon layer to the Kapton have been observed
- \rightarrow Reported to producer

QC on pre-streched meshes

Problem with the mesh tension:

-To low tension results in 'unflatness' and sagging due to electrostatic forces

 \rightarrow Not uniform amplification gap

High tension leads to deformation of the panels
→Different size of the drift gap
→Introduces error in the strip position

Auflösung Resolution	< 30 N/cm	= 0.2 N/cm
Résolution Resolución	> 30 N/cm	= 0.5 N/cm
Messbereich/Toleranz (N/cm)	3 - 19.8 N/cm	= +/- 0.4 N/cm
Measuring range/Tolerance (N/cm)	20 - 29.8 N/cm	= +/- 0.6 N/cm
Plage de mesure/Tolérance (N/cm)	30 - 39.5 N/cm	= +/- 1.0 N/cm
Campo de medida/Tolerancia (N/cm)	40 - 50 N/cm	= +/- 1.5 N/cm

QC on pre-streched meshes

Tension map of Mesh 1 (measurement points every 20x20 cm)

Dez 2013

	Mesh 1													
	left	mid-left	center	mid-right	right									
	5 cm	25 cm	45 cm	65 cm	85 cm									
5	21.0	18.2	16.0	19.0	21.4									
25	16.6	15.2	12.6	15.6	17.2									
45	10.2	10.6	9.2	11.2	12.6									
65	8.0	9.0	7.8	8.8	8.8									
85	7.2	7.8	7.0	7.8	7.4									
105	7.0	8.2	7.4	8.0	8.6									
125	17.4	16.0	12.8	15.2	17.8									
	6.0	15.0	24.0											

QC on pre-streched meshes

	Mesh 1					Mesh 2					Mesh 3							Mesh 4						
	1.0						1.0						1.0						1.0					
	5 cm	25 cm	45 cm	mid-right 65 cm	right 85 cm		5 cm	25 cm	45 cm	mid-right 65 cm	right 85 cm		5 cm	25 cm	45 cm	mid-right 65 cm	right 85 cm		5 cm	25 cm	45 cm	mid-right 65 cm	right 85 cm	
5	21.0	18.2	16.0	19.0	21.4	5	17.8	14.4	13.6	15.4	18.0	5	20.2	18.2	15.0	16.6	18.8	5	17.0	14.4	11.8	13.4	17.0	
25	16.6	15.2	12.6	15.6	17.2	25	12.2	11.2	10.6	11.8	13.0	25	18.4	17.6	14.8	15.8	17.8	25	16.4	14.6	12.4	13.4	15.4	
45	10.2	10.6	9.2	11.2	12.6	45	15.2	13.4	12.8	15.0	16.4	45	15.6	15.8	12.8	13.8	16.0	45	14.8	13.8	11.2	12.8	14.8	
65	8.0	9.0	7.8	8.8	8.8	65	12.6	10.2	10.4	11.8	13.0	65	15.0	13.8	11.8	12.4	14.6	65	14.6	13.8	10.8	12.0	14.0	
85	7.2	7.8	7.0	7.8	7.4	85	12.6	10.8	10.2	11.6	13.0	85	12.6	10.8	10.0	10.2	11.0	85	13.4	12.6	9.8	10.6	12.0	
105	7.0	8.2	7.4	8.0	8.6	105	16.0	14.4	13.2	15.2	17.8	105	6.4	8.0	7.2	7.2	7.8	105	9.2	10.2	8.6	8.8	10.0	
125	17.4	16.0	12.8	15.2	17.8	125	14.4	16.0	15.4	17.4	21.1	125	14.4	13.2	10.4	10.4	13.6	125	11.6	10.8	8.4	8.8	10.2	
	6.0	15.0	24.0				6.0	15.0	24.0				6.0	15.0	24.0				6.0	15.0	24.0			
	0.0	20.0	21.0				0.0	23.0	24.0				0.0	10.0	24.0				0.0	10.0	24.0			
		Mesh	5					Mesh	6				Mesh 7					Mesh 8						
	1-6	and lafe			dabb		1-6	anid laft		and states	-i-h+		1-6	and laft		and slates	-labs		1-6	and lat		and shake		
	5 cm	25 cm	45 cm	65 cm	ngnt 85 cm		5 cm	25 cm	45 cm	65 cm	ngnt 85 cm		5 cm	25 cm	45 cm	65 cm	ngnt 85 cm		5 cm	25 cm	45 cm	65 cm	85 cm	
5	17.4	15.8	14.6	13.8	17.8	5	19.0	15.8	13.6	14.8	18.0	5	18.2	15.4	14.4	13.0	17.8	5	22.8	18.6	16.6	19.4	23.6	
25	15.4	14.2	13.2	12.4	15.2	25	16.6	15.2	12.4	13.6	15.8	25	14.4	12.6	11.8	11.0	14.2	25	19.2	16.6	15.0	17.8	20.0	
45	13.4	12.6	12.0	11.6	14.0	45	14.4	14.4	11.6	13.0	14.8	45	11.4	10.6	10.2	9.6	11.8	45	14.4	12.4	11.2	14.2	16.4	
65	14.0	13.2	12.8	11.8	14.2	65	16.2	15.2	11.4	12.4	15.0	65	14.4	12.6	11.8	10.6	13.6	65	14.0	12.2	10.4	13.2	14.8	
85	12.8	12.2	11.8	10.6	13.2	85	16.2	16.0	11.8	12.8	15.0	85	12.4	11.2	10.8	9.6	12.2	85	14.6	12.6	10.8	13.6	15.4	
105	9.4	9.4	9.6	8.6	10.0	105	14.8	16.6	11.6	13.0	15.4	105	11.2	10.4	10.4	9.2	11.6	105	12.8	12.6	10.2	13.0	15.2	
125	11.2	10.4	9.8	8.2	11.4	125	18.6	20.2	14.2	16.0	19.6	125	13.8	12.4	11.4	10.0	13.6	125	16.8	16.0	12.0	16.4	19.4	
														1										
	6.0	15.0	24.0				6.0	15.0	24.0				6.0	15.0	24.0				6.0	15.0	24.0			

February 6th 2014

13th RD51 Collaboration meeting 2014 - CERN

QC on pre-streched meshes

Tension map of Mesh 1 (measurement points every 20x20 cm)

Dez 2013

Jan 2014

Difference

		Mesh	1				Mesh 1										
	left 5 cm	mid-left 25 cm	center 45 cm	mid-right 65 cm	right 85 cm		left 5 cm	mid-left 25 cm	center 45 cm	mid-right 65 cm	right 85 cm		left 5 cm	mid-left 25 cm	center 45 cm	mid-right 65 cm	right 85 cm
5	21.0	18.2	16.0	19.0	21.4	5	22.0	18.0	16.2	19.0	22.0	5	1.0	-0.2	0.2	0.0	0.6
25	16.6	15.2	12.6	15.6	17.2	25	16.6	14.8	13.2	15.6	17.8	25	0.0	-0.4	0.6	0.0	0.6
45	10.2	10.6	9.2	11.2	12.6	45	10.8	11.0	9.6	11.6	12.4	45	0.6	0.4	0.4	0.4	-0.2
65	8.0	9.0	7.8	8.8	8.8	65	8.6	9.0	7.8	9.0	8.8	65	0.6	0.0	0.0	0.2	0.0
85	7.2	7.8	7.0	7.8	7.4	85	7.6	8.0	7.2	8.0	7.8	85	0.4	0.2	0.2	0.2	0.4
105	7.0	8.2	7.4	8.0	8.6	105	7.8	8.6	7.8	8.8	8.6	105	0.8	0.4	0.4	0.8	0.0
125	17.4	16.0	12.8	15.2	17.8	125	18.2	16.2	13.2	15.8	18.6	125	0.8	0.2	0.4	0.6	0.8
	6.0	15.0	24.0				6.0	15.0	24.0				-2.0	0.0	2.0		

- Mesh tension varies between 6 and 20 N/cm, for 10 N/cm nominal value
- \rightarrow Systematic hints to problems during industrial mesh stretching
- \rightarrow Feedback to industries in ongoing
- No tension loss over 8 weeks has been observed (good glue!)
- Small increase of tension can be explained due to different expansion behavior of the stainless steel and the aluminum frame

- Components of the prototype have been used to identify QC items and test first measurement methods to collect experience.
- Feedback to industries could be given, improvement in production methods is in progress
- QC will go on with the upcoming steps:
 - finished PCB's with pillars (under production)
 - panels (dummy finished, functional panels under construction)
 - fully assembled quadruplet
 - etc.
- Tools for the QC will be improved and full size 'prototype setups' shall be ready before module0 production in end summer / begin autumn

Thank you for your attention!

AT LAS

Position of precision target B (0, y_B):

QC on PCBs

Hints to a systematic deviation in y direction: order of 200 μ m over 700mm \rightarrow 0,3‰

13th RD51 Collaboration meeting 2014 - CERN

QC-PCB – Positioning of D

QC- PCB – Positioning of E

