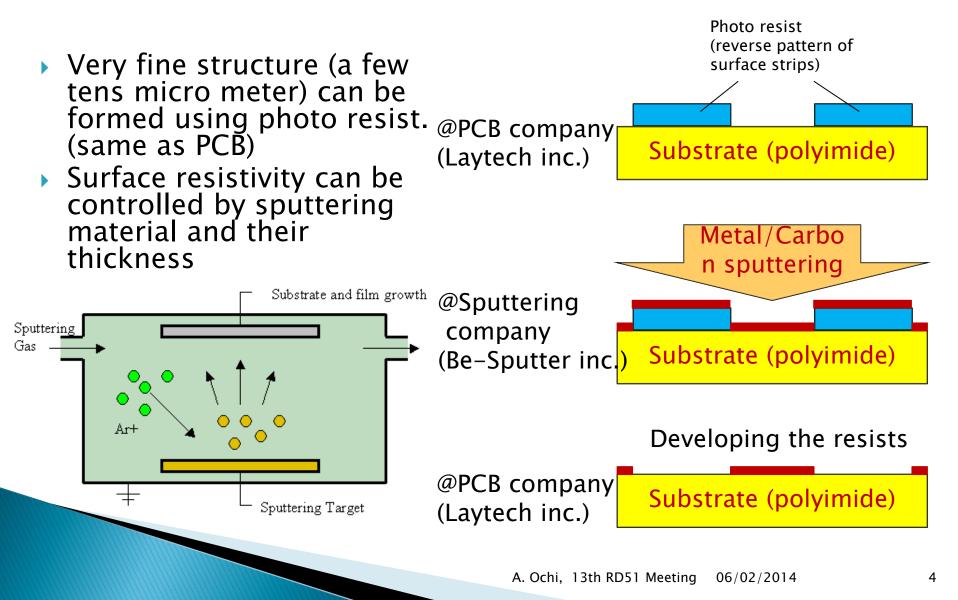

Carbon sputtering technology for ATLAS MicroMEGAS resistive

Atsuhiko Ochi¹, Yasuhiro Homma¹, Tsuyoshi Takemoto¹, Fumiya Yamane¹, Yousuke Kataoka², Tatsuya Masubuchi², Yuki Kawanishi², Shingo Terao² *Kobe University¹, Univ. Tokyo ICEPP*²

06/02/2014 13th RD51 meeting@ CERN

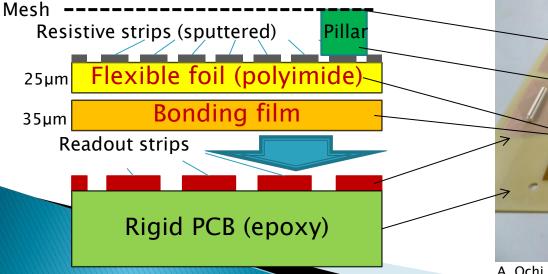
Requirements for ATLAS NSW MM

- High position resolution for one dimension
 - <100 µm for eta direction. (Resolution of a few cm is allowed for second coordinate.)
- Tolerant for high rate HIP particles
 - \sim 5kHz/cm²
- Resistive layer should be formed as strips
- Resistivity: ~20MΩ/cm
 - To protect from spark
- Mass production should be available, with large size (1m)
 - ~2000 board should be produced in half year.
- Low cost



Two option for resistive electrodes

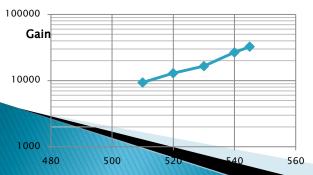
Screen printing


- Already several prototypes (@ CERN and Japan) has been produced.
- Made from carbon loaded polymer.
- Large size (>1m²) is available
- 400 µm pitch was available for MAMMA production.
- Carbon sputtering with liftoff process
 - New technique. (Since 2013)
 - Fine pattern (~10µm) is available.
 - Large size (>1m²) is available in industrial facilities.
 - Production quality is very well.
 - It is not affected by production environment

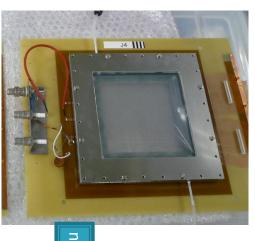
Liftoff process using sputtering

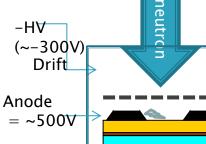
Prototype of small MicroMEGAS

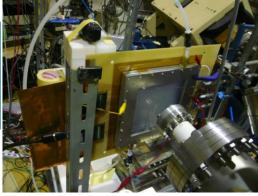
- June, 2013 bulk MM
 - Surface resistivity: $10M\Omega/sq$.
 - With 300Å carbon + 50Å W
- November, 2013 floating mesh
 - Surface resistivity: $500k\Omega/sq$.
 - With 3600Å carbon
- The readout board consists of
 - Readout strips (Rigid PCB).
 - Resistive strip foil (Polyimide film).
 - Fine strip pitch of 200 µm is formed on 25µm polyimide foil.
 - Substrate thickness : 60 µm.

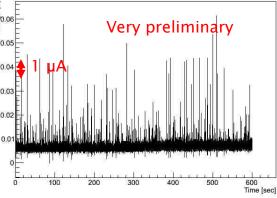


Carbon (300–600Å)

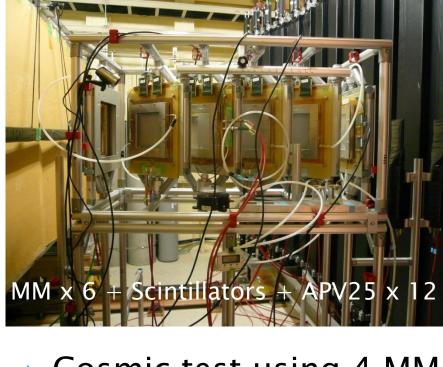

200.00um


Fast neutron test


- Beamtests for sputtering MPGD
- Gain curve of 5.9 keV X-ray.
 - Drift = -300V
 - Drift spacing: 5mm
 - Gas: Ar(93%) + CO2(7%)
- Fast Neutron test for spark probability
 - @Kobe Univ.
 - 17-23 Jun. 2013
 - 20-27 Jan. 2014
 - HV current log under intense neutron.
 - Neutron intense : ~ 10⁵ cps/cm².
 - 0.01V correspond to 1 μ A
 - ~600nA of base current was found while beam ON.



/Users/ochi/Documents/Work/mpgd/J4/current_monitor/run231708.txt



After sparks by neutrons

No damage is observed on the resistive strips after neutron test

Charged particle tracking

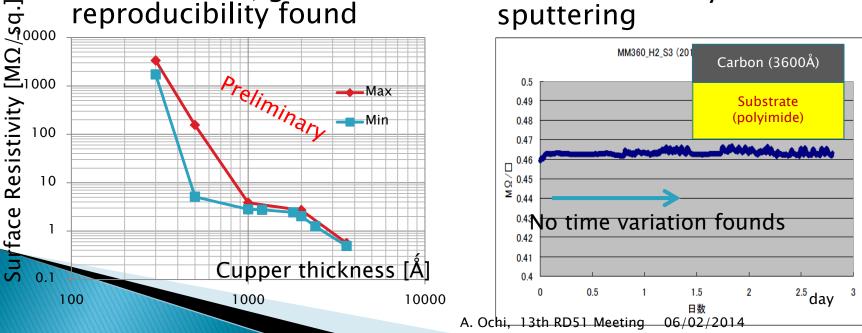
Cosmic test using 4 MMs^{***}
 At Kobe Univ, Sept. 2013
 1.4GeV electron beam
 At Spring-8 BL33 beamline,¹⁵⁰
 Nov. 2013

0.5016

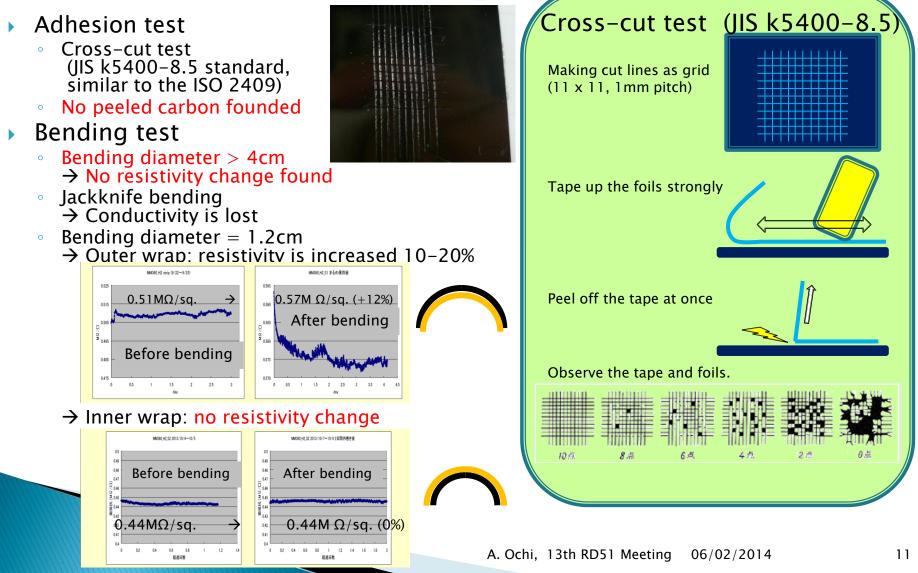
SRS system

Further improvements and tests for carbon sputtering

- Requirements for carbon strips
 - Resistive control
 - 20 $M\Omega/cm$ is required
 - It correspond to $600k\Omega/sq$. for $300\mu m$ line width.
 - Our first prototype has $10M\Omega$ /sq.
 - Thicker carbon sputter is required
 - Long time stability of resistivity
 - The resistivity of early prototypes were growing up as time goes on (~2%/day)
 - It was thought that the oxidation of metal (tungsten layer)
 - Is the carbon sputtering without metal layer possible?
 - Mechanical / chemical robustness test
 - Peeling off property (cross cut method)
 - Resistive stability against the bending of the foil
 - Chemical stabilities
 - For alkali and acid, used for PCB process.

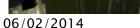

Resistivity and it's stability

- Resistivity dependence on carbon thickness
 - $300\text{\AA} \rightarrow 2G\Omega/\text{sq}$.
 - 3600Å → 500kΩ/sq.
 - Conductivity is not proportional to the thickness (t < 1000Å)
 - At t > 1000Å, good reproducibility found


 New prototype: (delivered at September)

- Carbon, 3600Å
- Surface resistivity ~ $500k\Omega/sq$.
- No time variation founds after several days from sputtering

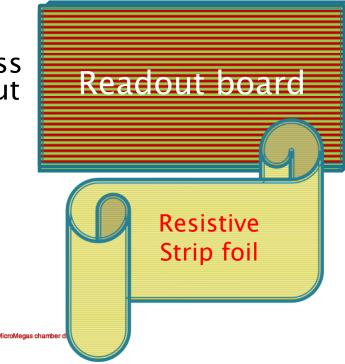
10

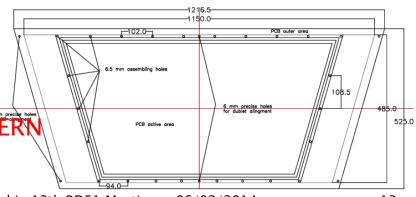


Mechanical robustness for thick sputtering carbon

Chemical robustness for new sputtering carbon

- Acid and alkali for PCB processing
 - Hydrochloric acid
 - Nitric acid
 - Sulfuric acid
 - Sodium carbonate
 → No damage on sputtered carbon
 - Sodium hydroxide
 → No damage for short dip
 → Peeling is found after 90 minutes dipping
- Almost all process of PCB production will not affect to the sputtering carbon


DECAPAGE ALUMINIUM


SOUDE CAUSTIQUE

GROUPE BASES

Prototype of large MMs

- We can divide the production process of resistive strip from that of readout board.
 - Resistive strip is formed on thin foil
 - We don't need fine alignment between resistive strips and readout strips.
- Dividing those processes will make the yield of production growing up.
- We are preparing the large resistive strip foil.
 - Size of foils: 500mm x 1000mm
 - 4 foils are need for a quadruplet
- 8 Foils (4 foils and 4 spare) were delivered to us at 25th October.
 - Some basic resistive parameters are checked.
 - Those have been already come to CER

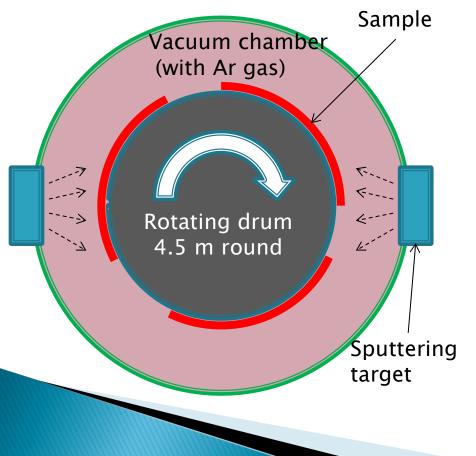
For patterning process RAYTECH

PCB company

- They are expert for FPC (Flexible Printed Circuit) production.
- Liftoff is basic process for FPC production

Exposure machines in clean room

Electro forming machines



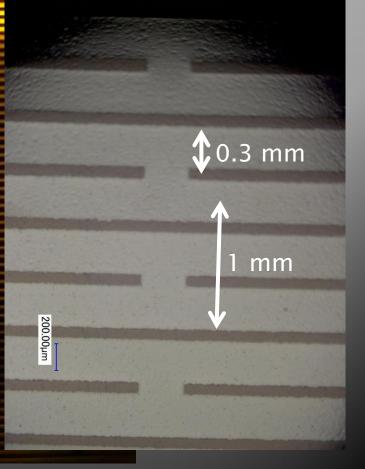
Etching machines

Sputtering facilities

Large size sputtering is available

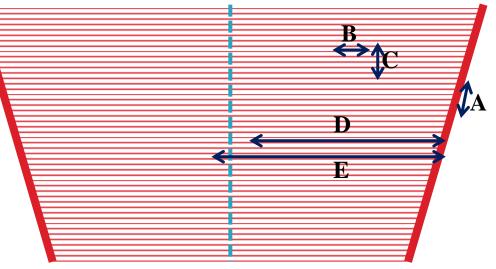
4.5m x 1m for flexible film

A. Ochi, 13th RD51 Meeting 06/02/2014


Large resistive strip foil

866.4mm

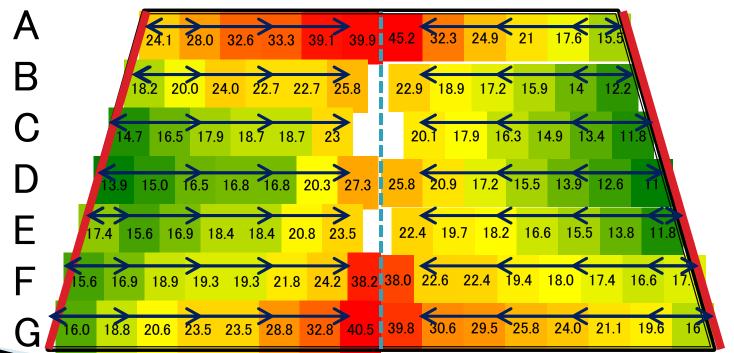
425.3mm


Enlarged picture of resistive strip foil

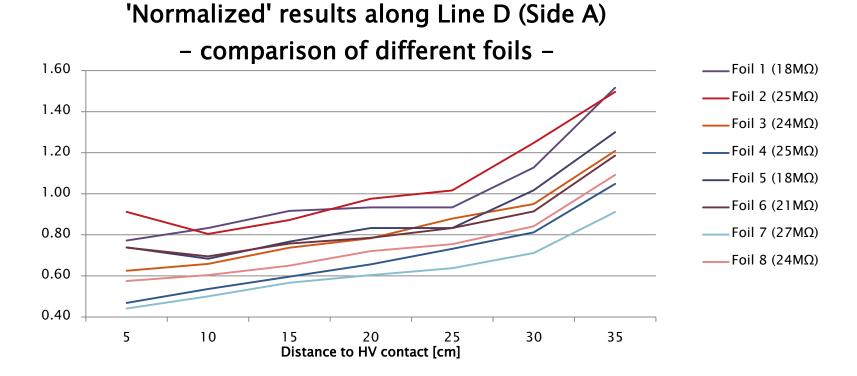
10 mm

Resistivity check

- We have no systematic way for resistivity test yet, so these results are based on rough measurements.
- However, we have check surface resistivity on several points for 8 foils as figure.
- The prove has about 2cm width.
- Distance between proves are, A,B,C: 1.5-2.5 cm, D: 30 cm, E: cross over a center line.
- "Inf" means more than $50M\Omega$.


Unit: MΩ

No.	Α	В	С	D	E
1	1.4	4	15	6	Inf
2	2.7	2.2	15	9.5	Inf
3	1.5	2.2	13.1	8.3	Inf
4	2.8	1.5	11	6.6	Inf
5	2.2	1.8	10.5	6.3	Inf
6	1.9	2.1	10	6.9	Inf
7	2.5	2.3	10.6	7.4	Inf
8	2.4	2.5	12.3	7.3	Inf


Resistivity check

 Resistivity from edge to lattice point (5cm x 5cm) were measured (by Fabien Kuger).

Foil: No.1, Unit: MΩ

Comparison of different foils

Variability of ~ 30% were found for different foils
 Reducing it is one of future issue

With readout board

- 4 foils are attached to readout board successfully (at Rui's workshop)
 - For making quadruplet prototype (MSW)
 - Resistivity did not change after gluing
- Pillars will be formed soon

Conclusion

- Sputtering technology is very promising for making MPGD resistive electrodes
 - Fine structure (~10µm)
 - Large area (a few meter)
- Prototype of MicroMEGAS using sputtered resistive electrodes were produced and tested.
 - It works as same as conventional resistive strip MicroMEGAS
 - Gain curve, operation in HIP were tested. It's OK.
- Carbon sputtering process is improved for ATLAS MicroMEGAS
 - Appropriate resistivity ~ $500k\Omega/sq$ with thick (3600Å) sputtering.
 - Good mechanical/chemical properties
- Large resistive strip foils (0.5m x 1m) are produced for functional prototype (MSW).
 - Qualitative resistivity check is ok.
 - The foils are already put on the readout board.
 - No resistivity change found before/after foil gluing.