RD51 electronics school
FPGA beginner’s course
Task 3 and 4

Task 3: Seven segment

ROUESS (elk)

n
EGIN
IF(clk'EVENT AND clk = '1')THEN

CASE = mux TS5

when "00"=>» an<= "1110";
5_char <= s_counter (3 downte
when "01"=» an<= "1101":

* Increase your counter from exercise 2 to a
depth of 16 bits

» Use the BASYS2 onboard seven segment
display to show the value of your counter in

hexadecimal reading p ADIGIENT ioons, o=
33V A 0w s A i"wTs; m— :; 25
F12 AND e e = s P —
J12 —w—Hw Elelzisislis] =k ‘n-; @ |;jo
N e — == =l R
K14 —w |\,[3.N3
e e g * Note that not each segment can be
O o)
=L LI controlled individually at the same time
HLE CA| * You need to cycle through the four digits by
N14 —s driving only one of the anodes high at a
N11 gg given time (Note that a PNP transistor inverts
P12 ~ W the signal, so the FPGA needs to drive ist
L1S W pins low to enable the digit)
M12 W
N13 W Drive a segment ,low" to enable the)

Display corresponding LED of the active digit

Digit multiplexing

* When the display redraw frequency is high CO0O @!
enough (>100 Hz) no flicker is perceptible. __13
The maximum display cycle time for a single r:l:;:o?g}rw ""’ =1
digit is in this case 2.5 ms, but you can also a:(jg LR ’-' ’-,
try other values. Ak o

% C6CM

= DP(N
T —

—— Encode 4-bhit binary to 1l-digit hex

—— note that to switch on a segment, the corresponding IS0 line must be drawn to '0!
—— HEX-to-sewven-seqment decoder

—— segment encoding

—-= 0
— 51 11
—— —_—— L &
-— 4 | | 2
—-= 3
FPROCESZ (5_char)
BEGIN
CAZE = char I3
when "O000"=rseg<s= 10000007 -
when "O001"=rseg<= M11110017; ——r1

whaw OO M P=woomr = O 000 TP — 2

Parallel processes

* Try to break down different tasks into different processes.

» Generate a 4 bit switching signal, all ones with a sweeping zero through the
different digits at ~1 kHz, using the 50 MHz onboard clock source and
reasonable clock dividers. Drive the segment anodes with this signal

» Use this signal also to decide, which digit of your number you want to
display.

Example: signal(7 downto 4) represents the second lowest hex digit of your
signal

» Encode this 4 bit value to be displayed into ist hex representation, switching
on the corresponding segments. Feed this bitmask to your FPGA segment
outputs

» Use signals
STD_LOGIC or STD_LOGIC_VECTOR(... DOWNTO ..))
to transport data in between your different processes

Design simulation

* When you finished your design (or an intermediate step with only few
processes), simulate its behaviour before flashing it into your FPGA.

Note that more complicated designs may take hours to be built, and simulation
helps you find bugs much easier

=> Always simulate each of your design entities! Even the simple ones, just to be
sure!

* In our case, no external stimuli apart from the clock source are required, the
design runs alone without intervention from outside. In this case the testbench is
simple — only the cock input needs to be simulated

» The ISE software helps you with the generation of the testbench

 Later simulation steps during the design process also include timing simulation
and signal propagation. We don‘t need this here.

Design simulation

» Add a new source to your design and choose ,VHDL Test bench®.

» Select your top module as target, and let the ISE software generate the test

bench file for you

b ISE I:'roj.ec.'l: lli;vi;;'itor {P.49d) — CA\Users
File Edit ‘iew Project Source Process Tools Window Layout Help

OE&F| L% Xwa| »itrspr 200
bosn SoEd el T
S| Wiew: @ Eﬂ}lmplementation = fE sirulation —— Company:

== —— Engineer:

Hierarchy

'l?ﬂ BASYS Tsegrment
= £ xc3si0le-depl3z

——igrEgte ot
—— Design MNaime
—— Module Name
—— Project Namm

S S S S
1
l

£]; Add Source.., —— Target Dewi
,HIEJ Add Copy of Source.., -— Tool wversio
I = —= Description
[Open -—
— £=-.| Rernove —— Dependencic
tanual Compile Order -- Revision:
o Setas Tap Madule = REV:_LS:_LDD g
Ef —— Additional

SmartGuide..,

libhrary IEEE;
use IEEE.3TD_Lv

@ Implernent Top Module

)) "
File/Path Display wse IEEE.STD Lt
| r—r—| Expand Al
. | Callpan entity BAZYE 7
2 MoProcesses Ru- - PY = Ikl
B Find.. Ctrl+F gre Lo
Processes: BAIYE T sed
= Design 5 B Design Properties.., dp
3 I an
B::ngoLr:" [2] Source Properties... end BASTS 7sem

; o 31
g?J\B _Syntlhe5|ze _XST | I Az architecture b

o MNew Source \Wizard

d
Select Source Type
Select source type, file name and its location,
BRM File
L: & Chip3cope Definition and Connection File
P Implernentation Constraints File
[IP (CORE Generator & Architecture YWizard)
MEM File
; | Schematic ;
C_VECTQ User Docurment Flename;

B

_VECTOR Werilog Test Fixture

T3_Tsedll | [p] WHOL Package

CTOR(3
CTOR(1
r rangeg

C_VECTG

| TE_B&S5YS_7segment_top|
Location:

\Usersizhll Dropbaxxilin:_Projects\BA3YS_Fsegment :|

[¥] add to project

[Mext] I Canecel

to 10 kHz and switch through digits

Design simulation

« Switch to the ,Siimulation” tab in your design overview, and edit your generated

testbench file

» Change the clock period value to match the 50 MHz Oscillator on the BASYS2 Board

 This is the only modification, as no further inputs (stimuli) need to be simulated

e Start the simulation.

l ISE Project Navigator (P.49d) - C\Users\ZbI\Dre

File

02

: Des‘l‘gn

Edit Wiew Project Source

.:--“ |: &8

i | vigw!

x| g o

Process Tools

Window

| | 4

Layout Help

2| AR ELQ

a2
" = |l

B9 fim

1] & | oo |

i

{él}lmplement @ Simul b
'E:l | Behavioral E[=

4 Hierarchy

«c35100e-4cp132
TB_BASYS_Tsegrment - behavior (T|

1,]

[}

Mo Processes Running

ISirn Simulator
Behavioral Check Syntax

~
_?)

BEGIN

—-— Component Declaration for the Thit Under Test

COMPONENT BASYS Tseomwent top

PORT |
clk : IN std logic;
gey ¢ OQUT ascd logic vector (6 downto O]
dp : OUT std logic:
an @ OUT =td logic veccor (3 downco 0)

1
END COMPONENT:
—-=Inputs
signal clk :

std logic := '0';
——Qutputs
signal seg

: std_lod ector (6 downto 0);
2ignal dp : scd logi
std_logj ctor (3 downto 0);

signal an :

—— Clock period de tions

constant clk perio : time := 20 ns;

-— Instantiate the Unit Under Test (UUT)
uut: BASYS Tsegment_top PORT AP |

IR =0 elK;

seg =» seq,

dp =»> dp,

an =» an

1i

-— Clock process definitions
c¢lk_process iprocess
hegin
clk <= '0';
wait for clk period/2:
ElE== Rl
wait for clk period/2:

Design simulation

» Add additional signals to the waveform inspection list, by selecting ,uut (unit under
test) and pick the signals you want to inspect

* In our case choose the signals related to digit multiplexing and segment display

[T 15im (P.49d) - [Defaultwet
EFiIe Edit ‘iew Simulation Window Layout Help

O2 | i SRR e M]
(Instances .. £+ O & X |Objects +0O&F X
| ol Simulation Objects For uut
| | 1 = a3 L e
| Instance and Process | i _‘é
|| Object Marme Value

7 stim_proc '.
W std_|logic 1164 |
(4 stol_logic_arith ||
] std_logic_unsigi

m Search
Shows All Elements

Lirnit Elernents
Radix
Selectin Wave Window
Showe Drivers
Force Constant...
Force Clock..,
Rermowe Force
] Go To Source Code

= Memory Editor

Design simulation

» Restart the simulation now including your added internal signals.
* You can then inspect each signal and port value for every single clock cycle!

* Digit multiplexing is ,slow" compared to the internal 50 MHz clock, so you need to
increase the simulation time to several ms

* Now check, whether your signals behave with time as you expected

1 ik
B seglei)
-”-r dp

"f‘. an[3 II]

Task 4: VGA monitor output

» Use the BASYS2 onboard VGA connector
to display something on a computer monitor

Pin1' Red
Fin2 Gm
Fin3 Blue
Pin13 HS
Pin 14 VS

1K e
P

Pin & GND

Pin & Red GND
Pin 7 Gm GND
Pin & Blu GND
Pin 10; Sync GND

HD-DB15

J13 BLUE1 5100

2004

2000
Sy

Figure 13. VGA pin definitions and Basys2 circuit

| H-DEL
|) ey

* VGA displays only need Horizontal Sync (HS),
Vertical Sync (VS), and analog color information per
pixel, in a certain timing sequence.

» The BASYS board uses a resistor ladder Digital-to-
analog converter with 3 bit resolution for the red and
green, and 2 bit for the blue channel to generate the
0V-0.7V analog signal

» For simplicity: only use the most significant bit of
each color (e.g. GRN2), and tie the others (GRN1,
GRNO) to zero

I

10

Image from
VGA tl m I n http://www.cs.ucr.edu/~jtaran
g go/csl22a lab4.html
* VGA ,Industy standard” resolution ~—pixel 0,0 pixel 0,639
of 640x480 pixels at 60 Hz refresh
rate needs a 25.175 MHz pixel clock

(close enough to 25 MHz, which we
can derive from the 50 MHz

-

) L
640 pixels are displayed each
time the beam traverses the screen

BASYS2 onboard clock) VGA Display
Retrace: No
. Olc! Cathode Ray Tube (CRT) Srant | | ity A
monitors do not only scan over the through the [Je pixel 479.0 pixel 479,639 —¢ is displayed
.. .. horizontal . during
visible are of the screen. Additional defiection this time

coil

lines and pixels are drawn with
~nvisible* sync information within the '
area ,outside" the visible screen. :

Stable current ramp: Information is
displayed during this time

» Modern LCD screen adopted this
scheme for compatibility

. Total horizontal time

» Drawing of a frame starts on the
upper left corner, when looking onto
the screen

Horizontal display time . retrace time .

time 1 e

+ (~ "front porch" : r"front porch"

Hs 1 3 =

Horizontal sync signal T - "back porch”
sets the retrace frequency

11

VGA timing

 You will need two counters (horizontal and vertical) to know at every time where on the
screen and in which part of the image drawing cycle. These counters determine what
your ,graphics card“ needs to to (display a pixel, display nothing, generate a HS or VS
signal, etc)

» Both sync signals (HS, VS) are inverted (active low), so they are kept ,high* normally,
and pulled ,low" during sync!

* One line is composed of 800 pixels, with HSync pulse (low) during pixels 8 to 103 and
image information only during pixels 152 to 791 (counting from 0)

* One image is composed of 525 such lines, with VSync pulse (low) during lines 2 and 3,
and image information only during lines 37 to 516 (counting from 0)

“4—_ VSynclines
(and more)

HSync pixels
(and more)

525 lines

Full frame _— | | " Visible

sent to monitor 800 pixels on screen

Implementation

» Write a process to toggle a 25 MHz STD_LOGIC signal at each 50 MHz clock. This is
now the pixel clock that drives your other processes.

* Increase the horizontal counter with each pixel clock cycle

* When your horizontal counter reaches its maximum value (e.g. 0 to 799), reset it to
zero and increase the vertical counter by one

* When the vertical counter reaches its maximum value (e.g. O to 524) reset it to zero.
Your image cycle is now complete.

» Use ,if [...] AND [...]“~ statements on your counters to check, whether you must assign
HS within a line or VS during lines

» Use similar statements to check, whether you are allowed to assign signals to the Red,
Green and Blue outputs

* The Red, Green and Blue outputs must be zero outside the ,visible* area of 640x480
pixels

* You can use certain bits of the horizontal and/or vertical counters (or their logical
combinations) to drive the color outputs to generate different patterns on the screen.
For a simple start — turn the complete screen red for example.

13

Hints

—— generate a 23Mhz clock by to
process [(clkS0) .
— » 25MHz clock generation
if clkS0'event and clki0='1"
if (elk25 = '0') then
clkzh <= "1";
el=e

if (horizontal counter »>= "000000100C o
and (horizontal counter < "00011010007%) -4 ° Hsync timing
then
HSYHC <= '0°';
el=ze

.
|
]
)
|
]
]
)
y
-
|
|
(W]

then
CutRed <= horizontal counter(3)
and wvertical counter (3);)
TtGresen <= nDIEEDntEl_EDantEI (4) e Content generatlon from counters

anrd wrertdireal crroanmter {4y - -> "COIOred boxesu

14

