
1

RD51 electronics school
FPGA beginner’s course

Task 3 and 4



2

Task 3: Seven segment 
display

• Increase your counter from exercise 2 to a 
depth of 16 bits

• Use the BASYS2 onboard seven segment 
display to show the value of your counter in 
hexadecimal reading

• Note that not each segment can be 
controlled individually at the same time

• You need to cycle through the four digits by 
driving only one of the anodes high at a 
given time (Note that a PNP transistor inverts 
the signal, so the FPGA needs to drive ist 
pins low to enable the digit)

• Drive a segment „low“ to enable the 
corresponding LED of the active digit



3

Digit multiplexing

• When the display redraw frequency is high 
enough (>100 Hz) no flicker is perceptible. 
The maximum display cycle time for a single 
digit is in this case 2.5 ms, but you can also 
try other values.

• ...



4

Parallel processes

• Try to break down different tasks into different processes.

• Generate a 4 bit switching signal, all ones with a sweeping zero through the 
different digits at ~1 kHz, using the 50 MHz onboard clock source and 
reasonable clock dividers. Drive the segment anodes with this signal

• Use this signal also to decide, which digit of your number you want to 
display. 
Example: signal(7 downto 4) represents the second lowest hex digit of your 
signal

• Encode this 4 bit value to be displayed into ist hex representation, switching 
on the corresponding segments. Feed this bitmask to your FPGA segment 
outputs

• Use signals 
STD_LOGIC or STD_LOGIC_VECTOR(... DOWNTO ...) 
to transport data in between your different processes



5

Design simulation

• When you finished your design (or an intermediate step with only few 
processes), simulate its behaviour before flashing it into your FPGA.
Note that more complicated designs may take hours to be built, and simulation 
helps you find bugs much easier
=> Always simulate each of your design entities! Even the simple ones, just to be 
sure!

• In our case, no external stimuli apart from the clock source are required, the 
design runs alone without intervention from outside. In this case the testbench is 
simple – only the cock input needs to be simulated

• The ISE software helps you with the generation of the testbench

• Later simulation steps during the design process also include timing simulation 
and signal propagation. We don‘t need this here.



6

Design simulation

• Add a new source to your design and choose „VHDL Test bench“.

• Select your top module as target, and let the ISE software generate the test 
bench file for you



7

Design simulation
• Switch to the „Siimulation“ tab in your design overview, and edit your generated 
testbench file

• Change the clock period value to match the 50 MHz Oscillator on the BASYS2 Board

• This is the only modification, as no further inputs (stimuli) need to be simulated

• Start the simulation.



8

Design simulation
• Add additional signals to the waveform inspection list, by selecting „uut“ (unit under 
test) and pick the signals you want to inspect

• In our case choose the signals related to digit multiplexing and segment display



9

Design simulation
• Restart the simulation now including your added internal signals.

• You can then inspect each signal and port value for every single clock cycle!

• Digit multiplexing is „slow“ compared to the internal 50 MHz clock, so you need to 
increase the simulation time to several ms

• Now check, whether your signals behave with time as you expected



10

Task 4: VGA monitor output

• Use the BASYS2 onboard VGA connector 
to display something on a computer monitor

• VGA displays only need Horizontal Sync (HS), 
Vertical Sync (VS), and analog color information per 
pixel, in a certain timing sequence.

• The BASYS board uses a resistor ladder Digital-to-
analog converter with 3 bit resolution for the red and 
green, and 2 bit for the blue channel to generate the 
0V-0.7V analog signal

• For simplicity: only use the most significant bit of 
each color (e.g. GRN2), and tie the others (GRN1, 
GRN0) to zero



11

VGA timing
• VGA „Industy standard“ resolution 
of 640x480 pixels at 60 Hz refresh 
rate needs a 25.175 MHz pixel clock 
(close enough to 25 MHz, which we 
can derive from the 50 MHz 
BASYS2 onboard clock)

• Old Cathode Ray Tube (CRT) 
monitors do not only scan over the 
visible are of the screen. Additional 
lines and pixels are drawn with 
„invisible“ sync information within the 
area „outside“ the visible screen. 

• Modern LCD screen adopted this 
scheme for compatibility

• Drawing of a frame starts on the 
upper left corner, when looking onto 
the screen

Image from 
http://www.cs.ucr.edu/~jtaran
go/cs122a_lab4.html



12

VGA timing
• You will need two counters (horizontal and vertical) to know at every time where on the 
screen and in which part of the image drawing cycle. These counters determine what 
your „graphics card“ needs to to (display a pixel, display nothing, generate a HS or VS 
signal, etc)

• Both sync signals (HS, VS) are inverted (active low), so they are kept „high“ normally, 
and pulled „low“ during sync! 

• One line is composed of 800 pixels, with HSync pulse (low) during pixels 8 to 103 and 
image information only during pixels 152 to 791 (counting from 0)

• One image is composed of 525 such lines, with VSync pulse (low) during lines 2 and 3, 
and image information only during lines 37 to 516 (counting from 0)

800 pixels

640 pixels 52
5 

lin
es

48
0 

lin
es

VSync lines
(and more)

HSync pixels
(and more)

Full frame 
sent to monitor

Visible 
on screen



13

Implementation
• Write a process to toggle a 25 MHz STD_LOGIC signal at each 50 MHz clock. This is 
now the pixel clock that drives your other processes.

• Increase the horizontal counter with each pixel clock cycle

• When your horizontal counter reaches its maximum value (e.g. 0 to 799), reset it to 
zero and increase the vertical counter by one

• When the vertical counter reaches its maximum value (e.g. 0 to 524) reset it to zero. 
Your image cycle is now complete.

• Use „if [...] AND [...]“– statements on your counters to check, whether you must assign 
HS within a line or VS during lines

• Use similar statements to check, whether you are allowed to assign signals to the Red, 
Green and Blue outputs

• The Red, Green and Blue outputs must be zero outside the „visible“ area of 640x480 
pixels

• You can use certain bits of the horizontal and/or vertical counters (or their logical 
combinations) to drive the color outputs to generate different patterns on the screen. 
For a simple start – turn the complete screen red for example.



14

Hints

• 25MHz clock generation

• Hsync timing

• Content generation from counters
-> „colored boxes“


