New ATLAS measurements to constrain the parton distributions in the proton

Mark Sutton, The University of Sussex On behalf of the ATLAS Collaboration

Preface

- Previously, ATLAS has presented data, and fits, based on EW boson production, and jet data at 7 TeV and 2.76 TeV
 - $r_s = (s+s)/2d \sim 1.0$
 - Enhanced gluon contribution at high x
- ATLAS now has a significantly larger data sample allowing analyses with increased statistical precision, significantly at higher E_T
- Together with this, ATLAS has an increasingly large, and developing portfolio of precision measurements
 - Will discuss here only a subset of those which will be useful in a QCD fit
 - Dijet production
 - Inclusive prompt photon production
 - ttbar production
 - High mass Drell-Yan
 - Electroweak boson production with charm
- Developments with APPLgrid mean that all these processes can in principle be included simultaneously in a QCD fit

What are the contributions?

- Different final states provide information on different subprocesses
 - Published ATLAS fits currently, and will continue to include published HERA data
 - DIS, at Born level, scattering off of quarks, one momentum parton fraction x

$$d\sigma_{\text{DIS}} \sim (1 - (1 - y_{\text{Bj}})^2) F_2(x, Q^2) - y_{\text{Bj}}^2 F_L(x, Q^2)$$
$$F_2 = x \sum_q e_q^2(q(x) + \bar{q}(x))$$

- Sensitive to the gluon distribution only through $\mathcal{O}(lpha_s)$ corrections

• For LHC collisions with two momentum fractions, x1 and x2

$$d\sigma = \sum_{i,j} \int dx_1 \int dx_2 \ f_i(x_1, \mu_F^2) f_j(x_2, \mu_F^2) \ \hat{\sigma}_{ij}(x_1, x_2, \mu_R^2)$$

- Dijet production, ttbar, inclusive photon ... all directly sensitive to the gluon distribution and the strong coupling and the valence quarks at high E_T
- Electroweak boson production sensitive to the valence and sea quarks
- EW bosons + jets also sensitive to the gluon

The gluon

- PDF fits only constrained to data with lower momentum transfer than available at the LHC have large uncertainties for the LHC kinematic region
 - As large as ~ 5% for the gg→Higgs (and larger) for top production
 - Softer gluon distribution from ABM
 - HERPDF also slightly softer that CT10 (reference) at high x, but normalisation the same at lower x

Incoming partons - inclusive jet production

- High E_T jets (~ 500 GeV) at the Tevatron produced predominantly due to qq scattering.
- At the LHC, 500 GeV jets are produced from partons at much lower x
 - More significant contribution from the gluon
 - Larger phase space for initial state radiation.

Dijet production

- Subsample of single inclusive jet production
- Subleading jet requirements may increases the renormalisation scale uncertainty,
- But have better control of hard process kinematics
- Still differences between PDF sets
 - Most notable at high masses and high ET where the data statistics are low and less constraining
- ABM typically has a softer gluon distribution

Nonperturbative and electroweak corrections

- Potentially large non-perturbative, (hadronisation and underlying event) corrections
 - Less significant for smaller jet radii
- Electroweak corrections as high as 10% for low rapidity high mass dijets pairs

Comparison with 2010 data

- Data/theory 1.4 **ATLAS** anti- k_t jets, R = 0.4 $\sqrt{s} = 7 \text{ TeV}, y^* < 0.5$ 1.2 0.8 - Data $\int L \, dt = 4.5 \, \text{fb}^{-1}$ 0.6 Syst. uncertainties $\int L dt = 4.5 \text{ fb}^{-1}$ • Data $\int L dt = 37 \text{ pb}^{-1}$ 0.4 Syst. uncertainties $\int L dt = 37 \text{ pb}^{-1}$ 0.2 3×10⁻¹ 2 3 *m*₁₂ [TeV]
- Significant improvement in both statistical and systematic uncertainty with respect to previous measurement
 - Nearly ~ 50 % reduction in systematic uncertainty at low and intermediate masses
- Kinematic range extended by $\sim 1 \mbox{ TeV}$

Dijet production from 2011 data

Lower prediction from ABM, possibly due to the softer gluon

Dijet production from 2011 data

• HERAPDF, also with slightly lower gluon contribution at high x than CT10, describes the data reasonably well

• ATLAS jets fit, epATLJet13 has significantly smaller uncertainties at high masses

Quantitative analysis

- Generate pseudo-experiments using different PDFs
 - Include PDF and other theory uncertainties in both generation and χ^2 definition
- Calculate the χ^2 for each replica, within the Full and High mass ranges
 - High defined as
 - m₁₂ > 1.31 TeV y* < 0.5
 - $m_{12} > 1.45 \text{ TeV}$ $0.5 < y^* < 1.0$
 - $m_{12} > 1.6 \text{ TeV}$ $1.0 < y^* < 1.5$

PDF set	y* ranges	mass range	P _{obs}	
		(full/high)	R = 0.4	R = 0.6
CT10	$y^* < 0.5$	high	0.742	0.785
	$y^* < 1.5$	high	0.080	0.066
	$y^* < 1.5$	full	0.324	0.168
HERAPDF1.5	$y^* < 0.5$	high	0.688	0.504
	$y^* < 1.5$	high	0.025	0.007
	$y^* < 1.5$	full	0.137	0.025
MSTW 2008	$y^* < 0.5$	high	0.328	0.533
	$y^* < 1.5$	high	0.167	0.183
	$y^* < 1.5$	full	0.470	0.352
NNPDF2.1	$y^* < 0.5$	high	0.405	0.568
	$y^* < 1.5$	high	0.151	0.125
	$y^* < 1.5$	full	0.431	0.242
ABM11	$y^* < 0.5$	high	0.024	$< 10^{-3}$
	$y^* < 1.5$	high	$< 10^{-3}$	$< 10^{-3}$
	$y^* < 1.5$	full	$< 10^{-3}$	$< 10^{-3}$

M Sutton - ATLAS measurements for constraining the proton PDF

Direct photon production

- ATL-PHYS-PUB-2013-018
- Data from <u>arXiv:1311.1440</u>
- Comparison of JetPhox and MCFM calculations with the data
 - NLO fragmentation calculated using JetPhox
 - Consistent shape between the calculations
- EW corrections not included
- Both calculations differ in shape with data for central photons
- Include effect of experimental systematic as nuisance parameter shifts

Central photon production

Scale and PDF uncertainties

- Large scale uncertainties, comparable to individual PDF uncertainties
- Potentially large differences between PDFs, larger than quoted uncertainties on individual PDF sets for

Top pair production

- ATLAS-CONF-2013-099 ٠
- Top pair production is sensitive to the gluon ٠

 $\frac{1}{\sigma} \frac{d\sigma}{d\gamma_{\text{ff}}}$

1

10⁻¹

0.8

NLO Data

Data also available on p_T(ttbar pair) although calculation ٠ intrinsically at an extra order in $\alpha_{\rm S}$

dt = 4.6 fb⁻¹

\s = 7 TeV

-2

-1.5

M Sutton - ATLAS measurements for constraining the proton FDF

-2.5

The high mass Drell-Yan cross section

- Phys. Lett. B 725 (2013) pp. 223-242
- Complement the inclusive Z production cross section measurement
- Calculations from the different PDFs all lie below the data for $m_{ee}\,{<}\,400~GeV$

M Sutton - ATLAS measurements for constraining the proton PDF

.

- 42.4 ± 1.0 ± 3.6 pb

Data

Stat

Cross section for W+ to W-+ charm meson production

ATLAS Preliminary

 $\sqrt{s} = 7 \text{ TeV} (2011)$

 $Ldt = 4.6 \text{ fb}^{-1}$

· Again, calculations using NNPDF2.3coll using ATLAS-epWZ12 more consistent with the data

Summary

- ATLAS has a large, and growing portfolio of precision measurements available that all have the potential to help constrain the parton distributions in the proton
- Only a small selection has been discussed here
- Developments APPLgrid mean that it can be used for comparisons between measurements and theoretical predictions for an increasing list of available processes, inclusive single jet, dijet, trijet production, Z and W production, with, or without jets or charm, heavy quark and ttbar pair production, prompt photons ...
- It will be a very interesting time ahead ...

Epilogue: the ATLAS-epWZ12 fit

- The ATLAS epWZ with the enhanced strange contribution, now available from the LHAPDF PDF sets page
 - Eigen value set: ATLAS-epWZ12-EIG.LHgrid •
 - Model variation set: <u>ATLAS-epWZ12-VAR.LHgrid</u> •
- So now everyone can perform their favourite calculations using the ATLAS fit !!!