

LHC Injectors Upgrade

LHC Injectors Upgrade

Coupled-bunch oscillation feedback measurements

H. Damerau

Machine Studies Working Group Meeting

19 November 2013

Many thanks to R. Garoby, S. Gilardoni, S. Hancock, M. Migliorati, M. Paoluzzi, E. Shaposhnikova, L.Ventura

- Introduction
- Measurements and mode analysis
- Mode spectra without feedback
- Excitation, symmetry of modes
- Mode scans
- Damping rates and kick strength
- Cross-damping
- Summary

Introduction

- Measurements and mode analysis
- Mode spectra without feedback
- Excitation, symmetry of modes
- Mode scans
- Damping rates and kick strength
- Cross-damping
- Summary

Introduction

- To control longitudinal coupled-bunch oscillations, a new wideband kicker cavity is being installed during LS1
- For MD studies, the spare 10 MHz cavity C10-11 can be used as kicker cavity for the feedback
 - → Low bandwidth, thus only specific modes to be damped
 - → But huge kick voltage available for MDs
- Difficulties to perform tests in 2012 as the coupled-bunch feedback was required for high-intensity beams to the LHC
- → Extensive studies during short 2013 run measuring
 - mode spectra along the cycle,
 - damping rate versus feedback gain, intensity, emittance, energy,
 - longitudinal kick voltage and
 - feedback in cross-damping configuration.

Coupled-bunch oscillations, time domain

- Bunches oscillate with different phases (and amplitudes)
- Mode number *n* defined by phase advance from bunch-to-bunch:

 $\Delta \phi = 2\pi n/h$

- Additionally the bunches may oscillate dipolar (m = 1), quadrupolar (m = 2), sextupolar (m = 3), etc.
- Present analysis: dipolar modes, *m* = 1

Example of an $n = 12 \mod (\Delta \phi \approx 206^{\circ})$

 \rightarrow How does this look like in frequency domain?

Coupled-bunch oscillations, freq. domain

 \rightarrow Synchrotron frequency sidebands of the f_{rev} harmonics:

6

- \rightarrow Each mode *n* is observable as an upper side-band of $n f_o$ or as a lower sideband of $(h - n)f_o$
- → **Damper:** Suppress synchrotron frequency side-bands
- → Damping and excitation of mode *n* may be achieved at:

Detection		Excitation		
harmonic	Side-band	harmonic	Side-band	
n	upper	n	upper]
h - n	lower	h - n	lower	J normal
h - n	lower	n	upper	
n	upper	h - n	lower	

Frequency domain feedback system

div/Meetings/APC/2005/apc050609/JL Vallet slides.pdf

- Introduction
- Measurements and mode analysis
- Mode spectra without feedback
- Excitation, symmetry of modes
- Mode scans
- Damping rates and kick strength
- Cross-damping
- Summary

Measurements (1/2)

Beam energy, <i>E</i>	13 GeV(C1800) - 15 GeV(C1850), or scan 9 GeV to 26 GeV	
RF voltage	~165 kV	
Synchrotron frequency, $f_{\rm s}$	~400 Hz	
Longitudinal emittance	<0.7 eVs, pushed to stab. limit	

1. Feedback in anti-phase to adjust optimum phase

Tek Stopped Single Seq	- Fee	Acqs edba	ck in an	08 Feb 13 10:53:48 ti-phase
				N ARABA AN AN AN AN AN
				1144114444444444040
				· · · · · · · · · · · · · · · · · · ·
Ch2 50 0mV		50 0mV	20 M 20.0ms 2.5MS/s	ms /div

2. Inject perturbation close to f_s (max. at ~ 395 Hz)

Measurements (2/2)

- Introduction
- Measurements and mode analysis
- Mode spectra without feedback
- Excitation, symmetry of modes
- Mode scans
- Damping rates and kick strength
- Cross-damping
- Summary

Observations along the cycle

Mode spectrum during acceleration (~10 cycle average):

21 bunches in h = 21

18 bunches in h = 21

→ Clean mode spectra for full ring with 21 bunches in h = 21
 → Mode n = 2 strongest, as independently found in simulations
 → More complicated spectra with 18 bunches (filling pattern)

Observations along the cycle

Mode spectrum during acceleration (~10 cycle average):

18 bunches in *h* = 21, 2009 data

18 bunches in *h* = 21, <mark>2013 data</mark>

- \rightarrow Clean mode spectra for full ring with 21 bunches in h = 21
 - → Mode *n* = 2 strongest, as independently found in simulations
- \rightarrow More complicated spectra with 18 bunches (filling pattern)
- \rightarrow Qualitatively well reproducible over several years
 - \rightarrow Absolute mode amplitudes depend on $N_{\rm b}$ and $\varepsilon_{\rm l}$

- Introduction
- Measurements and mode analysis
- Mode spectra without feedback
- Excitation, symmetry of modes
- Mode scans
- Damping rates and kick strength
- Cross-damping
- Summary

Excitation (feedback at $h_{FB} = 14, 18b$)

17

- Introduction
- Measurements and mode analysis
- Mode spectra without feedback
- Excitation, symmetry of modes
- Mode scans
- Damping rates and kick strength
- Cross-damping
- Summary and outlook

Mode scan with 18 bunches in h = 21

Excite each mode individually and measure mode spectrum

Mode scan with 21 bunches in h = 21

Excite each mode individually and measure mode spectrum

- Introduction
- Measurements and mode analysis
- Mode spectra without feedback
- Excitation, symmetry of modes
- Mode scans
- Damping rates and kick strength
- Cross-damping
- Summary

Damping rate versus gain and intensity

Damping rate versus ε₁ and cycle time

Kick voltage measurement

1. Time resolved spectrum of C10-11 cavity return 2. Extract an normalize relevant harmonic

- \rightarrow Amplitude modulation from carrier (at hf_{o}) and f_{s} side-band ($hf_{o} \pm f_{s}$)
- \rightarrow Fit gives initial damping amplitude and time (+ f_s and phase)

Kick voltage versus oscillation amplitude

3.0

- Excite a coupled-bunch oscillation and measure its amplitude
- Observe maximum damping voltage required
- 2.5 Only order of magnitude for Mode amplitude [ns] 7.0 1.0 1.0 kick voltage \rightarrow Overestimate expected as feedback normally started before oscillations are well developed 0.5 0.0 0.0 0.5 1.5 2.0 2.5 3.0 1.0 3.5 **Basic specifications of kicker cavity:** Initial damping voltage [kV] Frequency range 0.4 to 5.5 MHz RF voltage per sideband, V_{mode} ~ 1 kV Maximum total RF voltage, V_{max} ~ 5 kV M. Paoluzzi, H.D., Un-damped shunt impedance at $n \cdot f_{rev}$ $< 200 \Omega$ CERN-ACC-NOTE-2013-0019

- Introduction
- Measurements and mode analysis
- Mode spectra without feedback
- Excitation, symmetry of modes
- Mode scans
- Damping rates and kick strength
- Cross-damping
- Summary

Cross-damping

- \rightarrow Each mode *n* is observable as an upper side-band of $n f_o$ or as a lower sideband of $(h - n)f_o$
- → Important for PS longitudinal feedback:
 - \rightarrow Detection easier at $h_{\rm FB}$ = 10...20
 - \rightarrow Longitudinal kicker easier at $h_{\rm FB}$ = 1...11

 \rightarrow Swap sin/cos of LO signals to down- or up-conversion mixers

Test with feedback crossed

Detect at $h_{det} = 13$

 \rightarrow damp with C10-11 at $h_{\text{kick}} = 8$

 \rightarrow damp with C10-11 at $h_{\rm kick}$ = 13

Tested combinations h_{det/kick} = 8/13, 9/12 and 10/11
 → Feedback behaviour as expected

- Introduction
- Measurements and mode analysis
- Mode spectra without feedback
- Excitation, symmetry of modes
- Mode scans
- Damping rates and kick strength
- Cross-damping
- Summary

30

Summary

- 2013 run: excellent opportunity for tests
 - \rightarrow No need for very high intensity beams to LHC
 - \rightarrow Coupled-bunch feedback and the spare cavity available
- Clean mode scans: modes are well decoupled
 - \rightarrow New feedback also to operate in the frequency domain
 - → Similar signal processing as existing feedback, but digital and covering all harmonics simultaneously
- Demonstrated working feedback with detection and excitation at different harmonics
 - \rightarrow New feedback kicker operates at low band, 1...11 f_{rev}
 - \rightarrow Detection of coupled-bunch sidebands at 10...20 $f_{\rm rev}$

LHC Injectors Upgrade

THANK YOU FOR YOUR ATTENTION!

Mode analysis

Why not measuring in frequency domain with a spectrum analyzer?

- Revolution frequency *f*_{rev} sweeps along the cycle
- **Spurious** f_{rev} **lines** due to 6/7 filling (18 bunches in h = 21)
- Synchrotron side-bands very close to strong f_{rev} lines

Measurement in time domain:

- 1. Fit position of each bunch during each frame
- 2. Dipole oscillations: fit sinusoidal function to motion of bunch
- ightarrow 18 oscillation amplitudes $au_{
 m n}$, 18 phases $heta_{
 m n}$ + $f_{
 m s}$
- 3. Discrete Fourier transformation
- ightarrow 18 mode amplitudes τ_k , 18 mode phases θ_k

Example with

Residual carrier at f_0 harmonic (1/2)

- Due to an offset problem with the up conversion mixers, a spurious carrier is generated at the revolution frequency harmonic
 - → Significant power need from kicker cavity
 - → No contribution to feedback action

→ Will be resolved with digital low-level hardware for the coupled bunch feedback after

Residual carrier and f_0 harmonic (2/2)

• Try anti-phase excitation with well compensated offset:

- → Residual carrier at revolution frequency harmonic excites the corresponding coupled-bunch mode
- For *h* = 14, this confirms earlier measurements, driving instabilities
- Unfortunately no data taken for *h* = 17...20; expect improved stability

What remains to be analyzed...

- Mode scans with 50 ns and 25 ns beams
- Damping times for modes around *h* = 19 and 20 along the cycle → OK
- Damping times versus longitudinal emittance, intensity and feedback gain → OK
- Coupled-bunch mode spectra without feedback nor excitation → OK
- → Extract relevant voltage requirement and estimate performance of new longitudinal damper → tbd

