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Introduction

* To control longitudinal coupled-bunch oscillations, a new wide-
band kicker cavity is being installed during LS1

«  For MD studies, the spare 10 MHz cavity Cio-11 can be used as
kicker cavity for the feedback

— Low bandwidth, thus only specific modes to be damped

— But huge kick voltage available for MDs

- Difficulties to perform tests in 2012 as the coupled-bunch
feedback was required for high-intensity beams to the LHC

— Extensive studies during short 2013 run measuring

mode spectra along the cycle,

damping rate versus feedback gain, intensity, emittance, energy,
longitudinal kick voltage and

feedback in cross-damping configuration.
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l Coupled-bunch oscillations, time domain
J

* Bunches oscillate with different phases (and amplitudes)

Example of an n = 12 mode (A = 206°)

T
q
/
:

e Mode number n defined
by phase advance from
bunch-to-bunch: 12

Ad =2m n/h {0

14

* Additionally the
bunches may oscillate
dipolar (m =1),
quadrupolar (m = 2), 7
sextupolar (m = 3), etc.

Time [ms]

e —— e S |

* Present analysis: dipolar

O :
modes, m =1 0.0 0.1 0.2 0.3 0.4 0.5
Time [us]
— How does this look like in frequency domain? )
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— In the case of LHC-type beams in the PS (h = 21)

BEIEE

Coupled-bunch oscillations, freq. domain

— Synchrotron frequency sidebands of the f,

F. Pedersen, F. Sacherer, PAC77, pp. 1397-1399
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L JCoupled—bunch oscillations, freq. domain
JJ it 2 ot
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— Each mode n is observable as an upper side-band of n f, or
as a lower sideband of (h - n)f,

— Damper: Suppress synchrotron frequency side-bands
— Damping and excitation of mode n may be achieved at:

upper upper

- normal
h-n lower h-n lower
h-n lower n upper

Cross
n upper h-n lower _ (C\E RN§I
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l Frequency domain feedback system
J

Test

hgg f, (cos)

hgg £, (cos)

Down-conversion Filter and g Up-conversion

| perturbation Z

S hgg f, (sin) E E ~ E hgg f, (sin)
S : :
E — ! Filter '
~ | |
Py i l
S | |
~ i i
2 i i
» | , |
E —> Filter ;
S i i
v | i
S i i

Perturb.

J.-L. Vallet, https://ab-div.web.cern.ch/ab-
div/Meetings/APC/2005/apco50609/]JL Vallet slides.pdf

Longitudinal kicker


https://ab-div.web.cern.ch/ab-div/Meetings/APC/2005/apc050609/JL_Vallet_slides.pdf
https://ab-div.web.cern.ch/ab-div/Meetings/APC/2005/apc050609/JL_Vallet_slides.pdf
https://ab-div.web.cern.ch/ab-div/Meetings/APC/2005/apc050609/JL_Vallet_slides.pdf
https://ab-div.web.cern.ch/ab-div/Meetings/APC/2005/apc050609/JL_Vallet_slides.pdf
https://ab-div.web.cern.ch/ab-div/Meetings/APC/2005/apc050609/JL_Vallet_slides.pdf
https://ab-div.web.cern.ch/ab-div/Meetings/APC/2005/apc050609/JL_Vallet_slides.pdf

l JJJ Overview

* Measurements and mode analysis
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Measurements (1/2)

Beam energy, E 13 GeV(C1800) - 15 GeV(C1850),
or scan 9 GeV to 26 GeV

RF voltage ~165 kV

Synchrotron frequency, f, ~400 Hz

Longitudinal emittance <0.7 eVs, pushed to stab. limit

1. Feedbackin anti-phaseto 2. Injectperturbation close to
adjust optimum phase f. (max at ~395 Hz)

08 Feh 13 10:14:17

20 ms / dlv
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Measurements (2/2)
v

Excite with perturbation 4. Time domain mountain
and observe natural decay range data for analysis

1825 C11 h20 t1_a dat

Tek Stopped Single Sec 1 hcigs 0% Feb 13 10:19:18 |
. | . . . . . 4
. | . . . . . |
. | . . . . . 1k
| ) . . . . lof I
AnnAntnd A . A _
[If] \ I \ f ok
- 11l i =3 1
4 y i | ! &
(LA | | |
H - : ol
| . . . . . s
| . . . . gl
| . . |
| - 20ms/ d1V
0“
Tl 20 "
Cha 50.0mY & A

400z At

Fourler

1: ) 5 transform
5. Long. 3
=
emlttance 01 2 3 4 5 6 7 & 9 10111213 14 15 16 17
Mode mmmber, my,.
CE/RW
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Overview

* Mode spectra without feedback

A



3

Observations along the cycle

U

Mode spectrum during acceleration (~10 cycle average):

21 bunches in h =21 18 bunches in h = 21

0.6

0.4

Amplitude
[ns]

Amplitude

[ns]

Cycle
time [ms]

Cycle
time [ms]

Mode number, Mode number,

Abaich Mbatch

— Clean mode spectra for full ring with 21 bunches in h = 21
— Mode n = 2 strongest, as independently found in simulations

— More complicated spectra with 18 bunches (filling pattern)
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Observations along the cycle

U

Mode spectrum during acceleration (~10 cycle average):

18 bunches in h = 21, 2009 data 18 bunches in h = 21, 2013 data

0.6

0.4

Amplitude
Amplitude
[ns]

[ns]

(=]
wn
Mode

Cycle

Cycle
time [ms]

Mode number, Mode number,

Nbatch Mbatch

— Clean mode spectra for full ring with 21 bunches in h = 21
— Mode n = 2 strongest, as independently found in simulations

— More complicated spectra with 18 bunches (filling pattern)

— Qualitatively well reproducible over several years N
— Absolute mode amplitudes depend on Ny and g, Z
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Overview

+ Excitation, symmetry of modes
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Injection of perturbation

U,

-
own-conversion { Filterand £ ; . Up-conversion
' perturbation & £ !
. i . v g i .
—_ hgg f, (sin) i é A= i hgg f, (sin) 0
E : : QL
-
@ | O
E —| Filter -z
~ | —
Py
S g
-~ d
> =
o; :
Filter =
£ >
S =
: i &
hyy f, (cos) & 57 | hwf,(cos)
| 29

=

:

£

— Swap phasing of injected perturbation, perturb only sin/cos C‘E\/RDI
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Excitation with feedback in opposite phase

Z15
Q
B
Z1.0
o
=
<
205
Q
=
0.0
01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17
Mode number, #pgecn
Excitation with sin only
Z15
[}
E
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[=9
£
<
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Q
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Mode number, mygecn
Excitation with cos only
Z15
(]
2
£10
o
g
<
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=
0.0
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Mode number, 72pcn

Excitation (feedback at hy = 14, 18b)

Excitation with sin and cos in phase

Z15
[}
=
Z1.0
o
£
<
3 0.5
[=]
=
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o1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Mode number, #pgecn
Excitation with 0° at sin and 90° at cos
Z15
[}
=
Z10
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£
<
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Q
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0.0
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Mode number, 7y,
Excitation with 90° at sin and 0° at cos
Z15
(]
=
£10
[=H
=
<
gO.S
=]
=
0.0

01 2 3 4 5 6 7 8 9

Mode number, 72y,

10 11 12 13 14 15 16 17

Single side-band — single mode
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« Mode scans

Overview
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l Mode scan with 18 bunches in h = 21
J

Excite each mode individually and measure mode spectrum

Excitation cavity at 4 = 19 (6/7h = 16.2857)

|

2
<
LN

10 15

Nt
=)

-

o
in

Mode amplitude [
s
ne ﬁ‘ev
o

oo S 18 18
T 01 2 3 4 5 6 7 8 9 1011 1213 14 15 16 17 -
Mode number, e % 17 17
o . 3 _ el
2 Excitation cavity at 4 = 14 (6/7h = 12.) o 16 16
z° 5
520 @ 15 15
£15 5
o
£ 1.0 —er4 14
g = 13 13
=
0.0 01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 E
Mode number, mpch g 12 12
Excitati ityath=11(6/7h = 9.42857 —
2 xcitation cavity a (6/ ) g 1 11
520 210 | 110
215
o
5 10 0 5 10 15
205
> 00 Mode number, n
T 01 2 3 4 5 6 7 & 9 1011 12 13 14 15 16 17 °
Mode mumber, 7o — Some modes can be excited
very cleanly, others as a CE{W
\

mixture; artefact? o/
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Mode scan with 21 bunches in h = 21

Excite each mode individually and measure mode spectrum

Excitation cavity at 4 = 20
0 5 10 15 20
=
_ B2 20
_4._._- — —I_l
0123456 78 91011121314151617181920

Mode amplitude [ns]
D D = = NN
oS D D

el
(=2

(=
o O

Mode amplitude [ns]
"

Mode number, #mpqich

15 15

Excitation cavity at 7 =11

pper side band of ¢y,

<
=)

mplitude [ns]
= NN
[T =

:

2 3 I 56 7 89 1011121314]516171—{31920
Mode number, #pgich

10

[E—
-

Excitation cavity at # = 8

citation at

10 15 20
Mode number, n

0 5

de a
S o =
(=Y ]

01 23 456 78 91011121314151617181920
Mode number, #4ch

— Clean observation of all

possible modes CE/RW



U

Overview

- Damping rates and kick strength
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Damplng rate versus gain and intensity

Versus gain

h =20

150

22

4—— Measured damping

rate with feedback on

= 100} 100}
£ L~ Corrected for natural
I damping
S sof 50¢
v Zero damping at zero
. gain
O Bhe ..
0 20 40 60 80 100 0 20 40 60 8 100 v Natural damping in-
Gain [arb. units] Gain [arb. units] dependent from gain

» =19 versusintensity , _,,

0 100 20 30
Intensity, N, [10'° ppb]

120}

100}
80}
60}
af

w0

40 0

10 20 30 40

Intensity, N, [10'" ppb]

Damping increases
with intensity, more
signal for given CB
oscillation amplitude
Saturation leads to
non-zero damping

with zero Np? CERN

N
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Dampmg rate versus g and cycle time

_ 19 Versussl (RMS)h 2
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1 2001
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1 1001
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23

v Uncorrected:
damping efficiency
increases for larger g,

— Reduced natural
stability for smaller g,

v Corrected damping
independent from g,

nfrev €0
__ _rJrev—=u ith \

— Damping efficiency
reduces at higher

energy
— To be checked with
simulations c\gﬁﬂl
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1.

Kick voltage measurement

Time resolved spectrum of

C10-11 cavity return

. File View Run Replay Markers Setup Tools Window Help
BS @@ TN Frequency 1000MHz

RefLev: 000 dBm

& Time/div:
743 ms

© RBW:
15.0 kHz

[T vBw:

030

o Pos:
20.0 mdiv

eak

9 CF: 1000 NHz

© Span: 5.00 MHz

Stopped

Acq BW: 5.00 MHz, Acg Length: 116,000 ms ~ LFPath  TrigIn (front) Ref: Int Atten: 15 dB

2.

Vrr [kV]

Extract an normalize
relevant harmonic

4.5 Excitationl

——
4.0 Damping
35 H
3.0 M
2.5

1800 1820 1840 1860 1880
Ctime [ms]

— Amplitude modulation from carrier (at hf,) and f, side-band (hf, + f,)

— Fit gives initial damping amplitude and time (+ f, and phase)

CE?W
\

N
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— Overestimate expected as

Basic specifications of kicker cavity:

Kick voltage versus oscillation amplitude ~

Excite a coupled-bunch oscillation and measure its amplitude

Observe maximum damping voltage required
3.0

o
n

Only order of magnitude for
kick voltage

N
=)

feedback normally started
before oscillations are well
developed

Mode amplitude [ns]
s T

e
n

0'8.0 05 10 15 20 25 30 35
Initial damping voltage [kV]

Frequency range 0.4 to 5.5 MHz

RF voltage per sideband, V4. ~1kV

Maximum total RF voltage, V_ ., ~5kV

Un-damped shunt impedance at n-f;,, <200 Q) lé/lﬁll;;?ké?_’NHégﬁ_zog_omg C\Efw

N
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Overview

* Cross-damping



L JJ Cross-damping

Kick
Jx

2J . f

01 2 3 4 5 6 7 8 9 1011 12131415 16 17 18 19 20
upper
lower
201918171615 1413121110 9 &8 7 6 5 4 3 2 1 0
286 35/ 12/

Kicker baseband Preferred detection

Measure

— Each mode n is observable as an upper side-band of n f, or
as a lower sideband of (h - n)f,

— Important for PS longitudinal feedback:
— Detection easier at hgg = 10...20
— Longitudinal kicker easier at hgg = 1...11

-~ Howcanthisbechecked with the existing feedback? ()

27



l JJ .Cross—damping, h,.. +hy = hyp = 21

Need to flip side-bands: lower <> upper

Down-conversion | Filterand &£ | Up-conversion
| perturbation g
,-E\ hdeth (Sll’l)i é: E hkickfo (COS)
> .
E —{ Filter
~ |
Py
S
=
=2
7 s
= —> Filter
S
: - -
hecfo (COS)E hyiacfo (sin)

Perturb.

— Swap sin/cos of LO signals to down- or up-conversion mixers

Longitudinal kicker

@
\
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J Test with feedback crossed
‘M J Detect at hy. =13 — damp with Cio-11 at hy,, =8

Excitation cavity at 2 = 8 (6/7h = 6.85714)
= 1.4

—
[ ]

Mode amplitude [n

coeoo o
oo b o oo

01 2 3 4 5 6 7 8 9 10111213 14 15 16 17
Mode number, #pgcn

Detect at hy. =8 — damp with Cio-11 at hy, =13

Excitation cavity at 2 = 13 (6/7h = 11.1429)

01 2 3 4 5 6 7 8 9 1011 12 13 14 15 16 17
Mode number, #pach

* Tested combinations hg. ;. = 8/13, 9/12 and 10/11
— Feedback behaviour as expected D)
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* Summary

Overview
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Summary

2013 run: excellent opportunity for tests
— No need for very high intensity beams to LHC
— Coupled-bunch feedback and the spare cavity available

Clean mode scans: modes are well decoupled
— New feedback also to operate in the frequency domain

— Similar signal processing as existing feedback, but digital
and covering all harmonics simultaneously

Demonstrated working feedback with detection and
excitation at different harmonics

— New feedback kicker operates at low band, 1...11 f,

rev

— Detection of coupled-bunch sidebands at 10...20 f,

rev

CE?W
\

N
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l JJ Mode analysis

Why not measuring in frequency domain with a spectrum analyzer?
* Revolution frequency f,

rev

sweeps along the cycle
* Spurious f,., lines due to 6/7 filling (18 bunches in h = 21)

* Synchrotron side-bands very close to strong f,.., lines
Measurement in time domain:

1. Fit position of each bunch during each frame

o,

B Vs N ey
A T A AT AT
R Ry RO Y
v
FAYAY RN
I NAY A AW
N W S e W

(AN,

‘II
i

2. Dipole oscillations: fit sinusoidal function to motion of bunch

— 18 oscillation amplitudes t,, 18 phases 0, + f,
3. Discrete Fourier transformation

— 18 mode amplitudes 1;, 18 mode phases 0,

Mode amplitude
Mode phase
RIN o WIN

CERN
01 23456 78 91011121314151617 01 23 45678 91011121314151617 \/wl
P A
Mode number, mpaicn Mode number, #pgcp
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Residual carrier at f, harmonic (1/2)

J

* Due to an offset problem with the up conversion mixers, a spurious
carrier is generated at the revolution frequency harmonic

— Significant power need from kicker cavity

— No contribution to feedback action

Offset well compensated

16 Feh 13 14:41:04

— Will be resolved with digital low-level hardware for the coupled
bunch feedback after

34
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Residual carrier and f, harmonic (2/2)

* Tryanti-phase excitation with well compensated offset:

Offset well compensated

15 Feh 13 14:49:328

Chi 100rmY

— Residual carrier at revolution frequency harmonic excites the
corresponding coupled-bunch mode

* For h =14, this confirms earlier measurements, driving instabilities

* Unfortunately no data taken for h = 17...20; expect improved stability

...too late... C\E/RW
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What remains to be analyzed...

 Mode scans with 50 ns and 25 ns beams

* Damping times for modes around h =19 and 20 along the
cycle - OK

* Damping times versus longitudinal emittance, intensity
and feedback gain —» OK

* Coupled-bunch mode spectra without feedback nor
excitation - OK

— Extract relevant voltage requirement and estimate
performance of new longitudinal damper — tbd

36



