

LHC Injectors Upgrade

LHC Injectors Upgrade

Coupled-bunch oscillation feedback measurements

Damerau

Machine Studies Working Group Meeting

19 November 2013

Many thanks to R. Garoby, S. Gilardoni, S. Hancock, M. Migliorati, M. Paoluzzi, E. Shaposhnikova, L.Ventura

Overview 2

- **Introduction**
- **Measurements and mode analysis**
- **Mode spectra without feedback**
- **Excitation, symmetry of modes**
- **Mode scans**
- **Damping rates and kick strength**
- **Cross-damping**
- **Summary**

Overview 3

- **Measurements and mode analysis**
- **Mode spectra without feedback**
- **Excitation, symmetry of modes**
- **Mode scans**
- **Damping rates and kick strength**
- **Cross-damping**
- **Summary**

Introduction

- **To control longitudinal coupled-bunch oscillations, a new wideband kicker cavity is being installed during LS1**
- **For MD studies, the spare 10 MHz cavity C10-11 can be used as kicker cavity for the feedback**
	- \rightarrow Low bandwidth, thus only specific modes to be damped
	- \rightarrow But huge kick voltage available for MDs
- **Difficulties to perform tests in 2012 as the coupled-bunch feedback was required for high-intensity beams to the LHC**
- **Extensive studies during short 2013 run measuring**
	- **mode spectra along the cycle,**
	- **damping rate versus feedback gain, intensity, emittance, energy,**
	- **longitudinal kick voltage and**
	- **feedback in cross-damping configuration.**

Coupled-bunch oscillations, time domain ⁵

• **Bunches oscillate with different phases (and amplitudes)**

 $Time$ $[ms]$

• **Mode number** *n* **defined by phase advance from bunch-to-bunch:**

 $Δφ = 2π n/h$

- **Additionally the bunches may oscillate** $dipolar$ $(m = 1)$, quadrupolar $(m = 2)$, **sextupolar** $(m = 3)$, etc.
- **Present analysis: dipolar** $\bf{modes}, \bf{m} = 1$

Example of an *n* **= 12 mode (** $\Delta\phi \approx$ **206[°])**

 \rightarrow How does this look like in frequency domain?

Coupled-bunch oscillations, freq. domain ⁶

 \rightarrow Synchrotron frequency sidebands of the f_{rev} harmonics:

- \rightarrow Each mode *n* is observable as an upper side-band of *n* f_0 or as a lower sideband of $(h - n)f_0$
- **Damper: Suppress synchrotron frequency side-bands**
- **Damping and excitation of mode** *n* **may be achieved at:**

Frequency domain feedback system 88

Overview⁹

- **Introduction**
- **Measurements and mode analysis**
- **Mode spectra without feedback**
- **Excitation, symmetry of modes**
- **Mode scans**
- **Damping rates and kick strength**
- **Cross-damping**
- **Summary**

$$

1. Feedback in anti-phase to adjust optimum phase

2. Inject perturbation close to *f***s (max. at ~ 395 Hz)**

Measurements (2/2)

Overview¹²

- **Introduction**
- **Measurements and mode analysis**
- **Mode spectra without feedback**
- **Excitation, symmetry of modes**
- **Mode scans**
- **Damping rates and kick strength**
- **Cross-damping**
- **Summary**

Observations along the cycle ¹³

Mode spectrum during acceleration (~10 cycle average):

21 bunches in $h = 21$ **18 bunches in** $h = 21$

 \rightarrow Clean mode spectra for full ring with 21 bunches in $h = 21$ \rightarrow Mode $n = 2$ strongest, as independently found in simulations **More complicated spectra with 18 bunches (filling pattern)**

Observations along the cycle

Mode spectrum during acceleration (~10 cycle average):

18 bunches in *h* **= 21, 2009 data 18 bunches in** *h* **= 21, 2013 data**

- \rightarrow Clean mode spectra for full ring with 21 bunches in $h = 21$
	- \rightarrow Mode $n = 2$ strongest, as independently found in simulations
- **More complicated spectra with 18 bunches (filling pattern)**
- **Qualitatively well reproducible over several years**
	- \rightarrow Absolute mode amplitudes depend on N_b and ε_l

Overview 15

- **Introduction**
- **Measurements and mode analysis**
- **Mode spectra without feedback**
- **Excitation, symmetry of modes**
- **Mode scans**
- **Damping rates and kick strength**
- **Cross-damping**
- **Summary**

Excitation (feedback at $h_{FB} = 14$ **, 18b)** ¹⁷

Overview 18

- **Introduction**
- **Measurements and mode analysis**
- **Mode spectra without feedback**
- **Excitation, symmetry of modes**
- **Mode scans**
- **Damping rates and kick strength**
- **Cross-damping**
- **Summary and outlook**

Mode scan with 18 bunches in $h = 21$

Excite each mode individually and measure mode spectrum

Mode scan with 21 bunches in $h = 21$

Excite each mode individually and measure mode spectrum

Overview 21

- **Introduction**
- **Measurements and mode analysis**
- **Mode spectra without feedback**
- **Excitation, symmetry of modes**
- **Mode scans**
- **Damping rates and kick strength**
- **Cross-damping**
- **Summary**

Damping rate versus gain and intensity

Damping rate versus ε_1 **and cycle time**

Kick voltage measurement

1. Time resolved spectrum of C10-11 cavity return

2. Extract an normalize relevant harmonic

- \rightarrow Amplitude modulation from carrier (at $hf_{\rm o}$) and $f_{\rm s}$ side-band ($hf_{\rm o}$ ± $f_{\rm s}$)
- \rightarrow Fit gives initial damping amplitude and time (+ f_s and phase)

Kick voltage versus oscillation amplitude

 3.0

- **Excite a coupled-bunch oscillation and measure its amplitude**
- **Observe maximum damping voltage required**

Overview²⁶

- **Introduction**
- **Measurements and mode analysis**
- **Mode spectra without feedback**
- **Excitation, symmetry of modes**
- **Mode scans**
- **Damping rates and kick strength**
- **Cross-damping**
- **Summary**

- \rightarrow Each mode *n* is observable as an upper side-band of *n* f_0 or as a lower sideband of $(h - n)f_0$
- **Important for PS longitudinal feedback:**
	- \rightarrow Detection easier at $h_{FB} = 10...20$
	- \rightarrow Longitudinal kicker easier at $h_{FB} = 1...11$

Swap sin/cos of LO signals to down- or up-conversion mixers

Test with feedback crossed ²⁹

Detect at *h*_{det} = 13 \rightarrow **damp** with C10-11 at *h*_{kick} = 8

Detect at *h*_{det} = 8 \rightarrow **damp with C10-11 at** *h*_{kick} = 13

• **Tested combinations** $h_{\text{det/kick}} = 8/13$ **, 9/12 and 10/11 Feedback behaviour as expected**

Overview³⁰

- **Introduction**
- **Measurements and mode analysis**
- **Mode spectra without feedback**
- **Excitation, symmetry of modes**
- **Mode scans**
- **Damping rates and kick strength**
- **Cross-damping**
- **Summary**

Summary

- **2013 run: excellent opportunity for tests**
	- \rightarrow No need for very high intensity beams to LHC
	- **Coupled-bunch feedback and the spare cavity available**
- **Clean mode scans: modes are well decoupled**
	- **New feedback also to operate in the frequency domain**
	- **Similar signal processing as existing feedback, but digital and covering all harmonics simultaneously**
- **Demonstrated working feedback with detection and excitation at different harmonics**
	- → **New feedback kicker operates at low band, 1…11** f_{rev}
	- \rightarrow Detection of coupled-bunch sidebands at 10...20 f_{rev}

LHC Injectors Upgrade

THANK YOU FOR YOUR ATTENTION!

Mode analysis Example with

Why not measuring in frequency domain with a spectrum analyzer?

- **Revolution frequency** *f***rev sweeps along the cycle**
- **Spurious** f_{rev} **lines due to 6/7 filling (18 bunches in** $h = 21$ **)**
- **•** Synchrotron side-bands very close to strong f_{rev} lines

Measurement in time domain:

- **1. Fit position of each bunch during each frame**
- **2. Dipole oscillations: fit sinusoidal function to motion of bunch**
- \rightarrow 18 oscillation amplitudes τ_{n} , 18 phases θ_{n} + f_{s}
- **3. Discrete Fourier transformation**
- \rightarrow 18 mode amplitudes $\tau_{\mathbf{k}}$, 18 mode phases $\theta_{\mathbf{k}}$

Residual carrier at f_0 **harmonic (1/2)** ³⁴

- **Due to an offset problem with the up conversion mixers, a spurious carrier is generated at the revolution frequency harmonic**
	- \rightarrow Significant power need from kicker cavity
	- **No contribution to feedback action**

 Will be resolved with digital low-level hardware for the coupled bunch feedback after

Residual carrier and f_0 **harmonic (2/2)** ³⁵

• **Try anti-phase excitation with well compensated offset:**

- \rightarrow Residual carrier at revolution frequency harmonic excites the **corresponding coupled-bunch mode**
- **For** *h* **= 14, this confirms earlier measurements, driving instabilities**
- **Unfortunately no data taken for** *h* **= 17…20; expect improved stability**

What remains to be analyzed... ³⁶

- **Mode scans with 50 ns and 25 ns beams**
- **Damping times for modes around** *h* **= 19 and 20 along the** $cycle \rightarrow OK$
- **Damping times versus longitudinal emittance, intensity** and feedback gain \rightarrow OK
- **Coupled-bunch mode spectra without feedback nor** $\mathbf{excitation} \rightarrow \mathbf{OK}$
- **Extract relevant voltage requirement and estimate performance of new longitudinal damper** \rightarrow **tbd**

