

Data & Storage Services

Object Storage Some Input to Brainstorming discussion

Dirk Duellmann, IT-DSS

Object Stores

Basic Idea

- store user defined variable length byte sequences (objects)
 rather than fixed length blocks
 - abstracts lower level of media handling like a file
 - but with constrained data modification semantics
 - eg create, read, delete
 - no update
- Usually implementing media redundancy
 - mostly now using distributed object replicas
 - avoiding eg RAID recovery problems
 - several plan to add erasure-encoding (Reed Solomon or more advanced)
 - to be more space efficient
- identified by object ID with simpler semantics than eg posix file name semantics
 - eg no (scalable) iteration over content
 - application side keeps track of object cataloging

Goal:

- locally clustered store which scales better than posix (eg NAS)
- in access performance, price and operational effort

www.cern.ch/it

For example

CEPH

- redundant object storage with client side calculated (more scalable) placement decision (CRUSH)
- RADOS native access
 - S3 / Swift via gateway -> scalability impact?
- additional consolidation possibilities for sites
 - Block storage (eg for VM local space) used in IT Al project
 - CEPH File System
 - not yet supported but "almost awesome"
- Interest from several projects to evaluate
 - CASTOR: match high-speed tape drives to "slow" disk cache for migration/recall

Object -> Cloud Storage

Semantically similar

- but typically accessed via http extensions like S3 or swift
 - may tie-in easier with existing http caching components like SQUID
- trivial namespace scaling via bucket separation
 - user chooses placement via object name (url)
- commercial storage-as-service offerings and quasi-standard via Amazon docs exist
 - advantage: if "standard" service offered by a larger set of sites is needed
 - likely more suitable for volume scalability than single client performance
 - this depends more on the backend implementation than the access protocol

Server-less Object Storage

- Eg Seagate Kinetics Drive
- Single disk talks object storage protocol to client over a direct TCP/IP port
 - and organise replication/failover with other disks in a (LAN) networked disk cluster
 - open access library for app development
- Other disk vendors are probably (re-)evaluating this approach
 - Why now?
 - shingled disk technology comes with natural match in semantic constraints: eg no data/metadata updates
 - Early stage with several open questions
 - port price for disk network / price gain via reduced server CPU?
 - standardisation of protocol/semantics to allow app development at low risk of vendor binding?

CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it