
Data & Storage Services

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

DSS

Caching Strategies
Some Input to Brainstorming discussion

!
Dirk Duellmann, IT-DSS

!1

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

DSS Caching - a quite open definition

• Additional data copy to speed up access via
– storage with higher access speed
– storage with smaller access latency
– additional data paths
!

• Many people (including myself) would
usually use “Transparently added data copy
…”
– which means that the cache black-box maintains

the copy lifetime implicitly
• but in this discussion we wanted to include

popularity based data placement, which is
not really happening that transparently…

!2

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

DSS Caching Strategies

• Are being discussed since many years and progress
has been steady, but not rapid:

– Discussion and benefit analysis is complicated by
• missing / changing / differing access pattern knowledge
• different cache layers affecting/hiding each other

– in a way which is rather opaque to end-users, service providers and
framework developers

• In-process cache (TTreeCache) has an enormous
benefit

– to reduce # of round-trips and repeat reads in a single
process via protocol independent, pre-calculated vector-reads

– … and hence invalidated previous assumptions/optimisations
• Second biggest change (only enabled by above!) is

likely federated access
– which needs to be coherently integrated/evaluated wrt

caching
– remote reading infrequently used data is more effective than

attempting to cache !3

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

DSS Some existing or planned cache
components
Where What Why Who How Size Lifetime Accessed

Disk Server FS cache reduce repeated
disk IO

OS/VM pull GB RAM hours kHz

Site
(managed)

File Placement
(SE + Catalog)

push popular data to
avoid transfer I/O
wait

content: exp
storage: site

push 10-100 TB
(disk)

months 10-100Hz

Site
(unmanaged)

Proxy/CDN (eg
SQUID, Xroot
proxy, {Event
Proxy})

reduce latency for
repeat reads!
increase bandwitdh
via tree hierarchy

storage: site!
optionally:
exp push

pull 10TB?? weeks/months 10-100Hz

may come with file/block/{event} granule - efficiency depends on popular fraction of cache granule

Worker Node Async read-
ahead

increase CPU/IO
overlap

job async
pull

GB (RAM) job lifetime <Hz

persistent
version of above

reduce repeat reads
between jobs (eg
user laptop case)

user pull 10 GB (disk) weeks? <Hz

FS cache for
file:// access or
WN download

reduce repeated
disk/net IO

OS/VM pull GB RAM hours 100 Hz

Process TTreeCache reduce network/disk
round-trips

root + exp
framework

pull 10-100 GB
(RAM)

job lifetime <Hz

usage currently different between experiments and partially implemented in exp frameworks

Ideally we would look at this with an overall throughput-increase/$ perspective
- but we still miss a lot of analytics to get there !4

CERN IT Department
CH-1211 Genève 23

Switzerland
www.cern.ch/it

Internet
Services

DSS Some papers

• CHEP 10 - The Use of Proxy Caches for
File Access in a Multi-Tier Grid Environment
– describes proxy cache, async read-ahead and

persistent read-ahead cache and first tests
between CERN and BNL

• CHEP 13 - CMS/AAA paper - Xrootd, disk-
based caching proxy for optimisation of
data-access, data-placement and data-
replication
– more detailed analysis of new caching proxy with

monitoring results from CMS xroot monitoring

!5

