
CernVM Blueprint
for Long-term Data Preservation

Jakob Blomer

CERN PH-SFT

1 / 11

Overview

Base Technology: Virtual Machines
Virtual machines enable historic software environments
on today’s infrastructure.

Add-On 1: CernVM File System
CernVM-FS is a versioning and snapshotting file system
used it to make the virtual machine’s content accountable.

Add-On 2: CernVM Contextualization Agent
Supports textual specification for interacting CernVMs.
A historic analysis cluster is spawned from a single virtual machine image.

2 / 11

Overview

Base Technology: Virtual Machines
Virtual machines enable historic software environments
on today’s infrastructure.

Add-On 1: CernVM File System
CernVM-FS is a versioning and snapshotting file system
used it to make the virtual machine’s content accountable.

Add-On 2: CernVM Contextualization Agent
Supports textual specification for interacting CernVMs.
A historic analysis cluster is spawned from a single virtual machine image.

2 / 11

Overview

Base Technology: Virtual Machines
Virtual machines enable historic software environments
on today’s infrastructure.

Add-On 1: CernVM File System
CernVM-FS is a versioning and snapshotting file system
used it to make the virtual machine’s content accountable.

Add-On 2: CernVM Contextualization Agent
Supports textual specification for interacting CernVMs.
A historic analysis cluster is spawned from a single virtual machine image.

2 / 11

A Time Machine for the Analysis Environment

3 / 11

Rational of Preserving the Software Environment

1 Processing of legacy data

∙ Software implicitly encodes knowledge about
the correct interpretation of the data

∙ After substantial upgrades and modifications of the detector,
the new software might lose this legacy knowledge

∙ After experiment decommission, porting and validation of
software is likely to end

2 Validation of new software versions

∙ Otherwise, if the new software can process legacy data,
comparison with historic version provides input for validation

Alternative to preserving: eternal porting and validation

4 / 11

Rational of Preserving the Software Environment

1 Processing of legacy data

∙ Software implicitly encodes knowledge about
the correct interpretation of the data

∙ After substantial upgrades and modifications of the detector,
the new software might lose this legacy knowledge

∙ After experiment decommission, porting and validation of
software is likely to end

2 Validation of new software versions

∙ Otherwise, if the new software can process legacy data,
comparison with historic version provides input for validation

Alternative to preserving: eternal porting and validation

4 / 11

Rational of Preserving the Software Environment

1 Processing of legacy data

∙ Software implicitly encodes knowledge about
the correct interpretation of the data

∙ After substantial upgrades and modifications of the detector,
the new software might lose this legacy knowledge

∙ After experiment decommission, porting and validation of
software is likely to end

2 Validation of new software versions

∙ Otherwise, if the new software can process legacy data,
comparison with historic version provides input for validation

Alternative to preserving: eternal porting and validation

4 / 11

Potential of Virtualization Technology
. . . with reasonable performance

∙ Very efficient on Intel architecture

∙ Blessed by almost 30 years backwards compatibility

Efficient virtualization across architectures:

∙ Connectix Virtual PC (’90)

∙ Intel on PowerPC

∙ Windows, OS/2, Redhat Linux
on Mac OS

5 / 11

Potential of Virtualization Technology
. . . with reasonable performance

∙ Very efficient on Intel architecture

∙ Blessed by almost 30 years backwards compatibility

Efficient virtualization across architectures:

∙ Apple Rosetta (2006)

∙ PowerPC on Intel

∙ Speed: ≈50% of latest
PowerPC

5 / 11

HEP Data Processing Environment

Compiler
System Libraries

OS Kernel

20 MLOC

High Energy Physics
Libraries

5 MLOC

Experiment
Software Framework

4 MLOC

Individual
Analysis Code

0.1 MLOC

st
ab

le
ch

an
gi

ng

Amplifying

∙ Frequent Updates

∙ Not a single binary –
a development environment

∙ Hundreds of libraries with
partially untracked
dependencies

∙ Not easily chunkable

∙ Not easily packagable

6 / 11

Versioning and Snapshots in CernVM-FS

Repository

/cvmfs/atlas.cern.ch

software

17.0.0

ChangeLog
...

806fbb67373e9...

Chunk store File catalogs

Cryptographic Hash

Data Store
∙ Eliminates duplicates

∙ Never deletes, archiving

File Catalog

∙ Directory structure, symlinks

∙ Content hashes of regular files

∙ Digitally signed

∙ Plain files

The root hash (40 characters) defines a file system snapshot (similar to git)
Track record of 5 years LHC software

7 / 11

Building blocks of CernVM

CernVM 3

initrd: CernVM-FS + 𝜇Contextualization

AUFS R/W Overlay

OS + Extras

Kernel𝜇
C
er

nV
M

Sc
ra

tc
h

H
D

User Data (EC2, OpenStack, . . .)

FuseAUFS

CernVM Online

12MB

100MB

Twofold system: 𝜇CernVM boot loader + OS delivered by CernVM-FS

∙ The very same image can be contextualized to run
Scientific Linux 4 32bit as well as the latest Scientific Linux 6 64bit

∙ ≈ 10 years with a single image

8 / 11

Contextualization

“Context”
∙ Small ASCII text snippets

∙ Can be versioned

∙ Human readable

Contextualization Examples

∙ Inject credentials (ssh, X.509)

∙ Condor head & batch services

∙ Squid server

∙ XrootD storage proxy

∙ Monitoring & directory service
agents

!"#$%&'()*+',%-.//!"#$%&'()*+',%-.// 0(12(3456789:9;91(859+0(12(3456789:9;91(859+ #<=>#<=>?%/@%A3B?%%-.//%?%/@%A3B?%%-.//%CC -D-D

#'E,7F1(%#18F1(%:8%3%6'G

!"##"$%&'()*+'&%,"&-'.%/0%1("$-2'$.%$".'
34-+,%#4&-'(5%678%94-':405%&-"(49'%4$.%;88<%=(">0

?4+,%=,0&*+4@%$".'
!"$-(*/A-'&%-"%+"##"$%&-"(49'%%=""@
BA$&%,0='()*&"(5%/4-+,%%:"(C'(%%
?>="(-&%&-"(49'%@"+4@%&-"(49'%-"%+"##"$%=""@

D*(-A4@%E4+,*$'&
F-4(-'.%/0%-,'%&A*-4/@'%!@"A.%#*..@':4('
G$@0%@*#*-'.%"A-9"*$9%$'-:"(C%+"$$'+-*)*-0%)*4%
94-':40%$".'H;88<%=(">0
7++'&&%-"%.4-4%1*@'&%)*4%<GFIJ%K1*@'%&0&-'#L%@40'(
F"1-:4('%.'@*)'('.%-"%DE&%1("#%M'/%&'()'(%('="&*-"(0
3A*@-%1"(#%('+*='&%4$.%+"#="$'$-&%&-"('.%*$%&-("$9@0%
)'(&*"$'.%('="&*-"(0

7++'&&%-"%'>-'($4@%#4&&%&-"(49'%)*4%&-"(49'%=(">0
?$.%A&'(%7<I%-"%&A/#*-%N"/&

;88<
<(">0

F-"(49'
<(">0

678
O4-':40

34-+,
E4&-'(

P

!'($DE

!'($DE

!'($DE

F-"(49'
F'()'(

34-+,
M"(C'(;0='()*&"(

PQQ$

EFF

PQQPQQ

FHM 8!<HI< 7<I
9 / 11

Components of the CernVM Blue PrintLong-term preservation of analysis software environment!

Virtual Machine! CernVM Filesystem!

Private Cloud!Bookkeeping!

CernVM - based !
data analysis environment

preservation!

More info : A practical approach to virtualization in HEP: http://dx.doi.org/10.1140/epjp/i2011-11013-1 || CernVM Homepage : http://cernvm.cern.ch || May 2012!

• CernVM-FS environment is "
defined by version strings. OS "
packages are defined by a versioned, "
closed package group (Meta-RPM)!

• You need only the CernVM version string to
rebuild CernVM image on demand.!

• Ensembles of CernVMs "
can recreate a virtual
cluster for data processing.!

•  CernVM can be contextualized using a small
subset of EC2 API that allows it to be
deployed on public or private clouds!

• Read-only, globally distributed file system
optimized for software distribution.!

• Based on plain files and HTTP!
• Snapshotting and versioning file system!

•  Already used in production
by LHC experiments.!

• Linux distribution based on Scientific Linux.!
• Supports all popular hypervisors.!
• Minimal footprint, the VM interface is needed!
• Flexible contextualization.!

10 / 11

Summary

∙ Virtualization technology can easily
bridge tens of years

∙ CernVM technologies provide a
data processing environment identified
by a version string

∙ Such virtual machines integrate well with
today’s cloud infrastructures

∙ Such virtual machines are easy to use and
they can be given to “interested citizens”

Time

Sp
ac

e

Distribution of the
Runtime Environment

Next Steps:

1 Investigate in virtualization and long-term software preservation
outside HEP

2 Demonstrator: ALEPH physics on CernVM/Openstack

11 / 11

1 Backup Slides

12 / 11

Build Process: Scientific Linux on CernVM-FS
Maintenance of the repository should not become a Linux distributor’s job
But: should be reproducible and well-documented

Idea: automatically generate a fully versioned, closed package list
from a “shopping list” of unversioned packages

Scientific Linux EPEL CernVM Extras (≈ 50)

· · ·

!""#
$%&"'#
(#

Formulate dependencies as
Integer Linear Program

Package
Archive

Dependency
Closure

yum install
on CernVM-FS

13 / 11

Build Process: Package Dependency ILP
Normalized (Integer) Linear Program:

Minimize (c1 · · · cn) ·

⎛⎜⎝x1
...
xn

⎞⎟⎠ subject to

⎛⎜⎝a11 · · · a1n
...

. . .
...

am1 · · · amn

⎞⎟⎠ ·

⎛⎜⎝x1
...
xn

⎞⎟⎠ ≤

⎛⎜⎝b1
...

bm

⎞⎟⎠
Here: every available (package, version) is mapped to a xi ∈ {0, 1}.
Cost vector: newer versions are cheaper than older versions.

(Obviously: less packages cheaper than more packages.)
Dependencies:

Package xa requires xb or xc : xb + xc − xa ≥ 0.
Packages xa and xb conflict: xa + xb ≤ 1.
(. . .)

Figures
≈17 000 available packages (n = 17000), 500 packages on “shopping list”
≈160 000 inequalities (m = 160000), solving time <10 s (glpk)
Meta RPM: ≈1 000 fully versioned packages, dependency closure

Idea: Mancinelli, Boender, di Cosmo, Vouillon, Durak (2006)
14 / 11

Hypervisor Support Status

Hypervisor / Cloud Controller Status

VirtualBox X
VMware X
KVM X
Xen X
Microsoft HyperV X
Parallels E4

Openstack X
OpenNebula X3

Amazon EC2 X1

Google Compute Engine E2

1 Only tested with ephemeral storage, not with EBS backed instances
2 Waiting for custom kernel support
3 Only amiconfig contextualization
4 Unclear license of the guest additions

15 / 11

	Appendix
	Backup Slides

