A storm in a "T" cup

(Overview of kinematic variables)

K.C. Kong

MC4BSM8

Center for Theoretical Physics of the Universe, Daejeon, South Korea, May 19-23, 2014

A storm in a "T" cup

(Overview of kinematic variables)

based on work with: FIOxBridge (fl'øks,brid3) collaboration K.C. Kong

MC4BSM8

Center for Theoretical Physics of the Universe, Daejeon, South Korea, May 19-23, 2014

Recall there are some problems (?) in SM See A.Weiler's talk

What are common (?) features of "solutions" to these problems?

- Big increase in particle content
- Longish decay chains
- Missing massive particles
- Large jet/lepton/photon multiplicity

The game

 $\begin{aligned} \mathcal{L} &= -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} \\ &+ i F \mathcal{D} \mathcal{L} + h.c. \\ &+ \mathcal{L} \mathcal{D} \mathcal{D} \mathcal{L} + h.c. \\ &+ \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{D} \mathcal{D} + h.c. \\ &+ |\mathcal{D} \mathcal{D}|^2 - V(\mathcal{D}) \end{aligned}$

+ more terms...?

40 M / second over 10 years

At some point, 5000 people will shout:

A large collider of hadrons ...

... not a collider of large hadrons

What is that something? How hard is it to identify what was found? What is the mass scale of the "thing"? Can we measure it?

There were lots of ideas, especially for 7-8 years.

Do we care about masses?

- Common Parameters in the Lagrangian
- Interpretation
 - SUSY breaking mechanism, geometry of ED
- Prediction of new things
 - Mass of W,Z -> indirect top quark mass "measurement"
 - Masses of W/Z/t -> indirect measurement of the Higgs mass
- Expedites discovery optimal selection

"mass measurement methods"

... short for ...

"parameter estimation and discovery techniques"

Some methods, variables...

Missing momenta	Mass me	Spin measurements	
reconstruction?	Inclusive	2 symmetric chains	
None	Inv. mass endpoints and boundary lines		Inv. mass shapes
	М	Wedgebox	
Approximate	S	M M	As usual (MAOS)
Exact	?	Polynomial method	As usual
	ontimism		

Types of Technique

assumptions

- Missing transverse momentum
- M_eff, H_T
- s Hat Min
- M_T
- M_TGEN
- M_T2 / M_CT
- M_T2 (with "kinks")
- M_T2 / M_CT (parallel / perp)
- M_T2 / M_CT ("sub-system")
- "Polynomial" constraints
- Multi-event polynomial constraints
- Whole dataset variables
- Cross section
- Max Likelihood / Matrix Element

Types of Technique

- Missing transverse momentum
- M_eff, H_T
- s Hat Min
- M_T
- M_TGEN
- M_T2 / M_CT
- M_T2 (with "kinks")
- M_T2 / M_CT (parallel / perp)
- M_T2 / M_CT ("sub-system")
- "Polynomial" constraints
- Multi-event polynomial constraints
- Whole dataset variables
- Cross section
- Max Likelihood / Matrix Element

Types of Technique

Robust

Fragile

- Missing transverse momentum
- M_eff, H_T
- s Hat Min
- M_T
- M_TGEN
- M_T2 / M_CT
- M_T2 (with "kinks")
- M_T2 / M_CT (parallel / perp)
- M_T2 / M_CT ("sub-system")
- "Polynomial" constraints
- Multi-event polynomial constraints
- Whole dataset variables
- Cross section
- Max Likelihood / Matrix Element

Interpretation : the balance of benefits

Taken from Alan Barr's talk

Taken from Alan Barr's talk

A storm in a "T" cup: the connoisseur's guide to transverse projections and massconstraining variables, 1105.2977

- 7 authors (3 ATLAS, 2 CMS, 2 Theory)
 - 3-2-2 to 5-1-1 (faculty/postdocs/students)
 - 4-3 to 5-2 (experimentalists/theorists)
- ~ 50 pages (in two columns)
- ~ 300 equations
- 14 figures
- ~60 references

- Generic SUSY-like event: (at least) two invisible particles. Exact reconstruction is difficult, especially for:
- Large n: combinatorial problem
 - HT, missing ET, Meff, MTGen, Smin
- Small n: lack of information problem
 - MT, MT2, MT,ZZ, MC,WW, M2C, MT2perp, MT2parallel
- Note the common feature in many of these variables
 - the index "T"

 M_{T2gen} \hat{s}_{min} (sub)Ŝmin m_{T2} h_T m_T^{true} m_{eff} $M_{C,WW}$ Type $M_{T,ZZ}$ M_{2C} $m_{TZ'}^{reco}$ Type m_{T2} $m_{Te
u}$ m_{T} $m_{T2} \bot$

W. Lamb (1955): "The finder of a new elementary particle used to be rewarded by a Nobel Prize, but such a discovery now ought to be punished by a \$10,000 fine" Joe McDonald rotic

rotic

Outline

- Transversification
 - how do we project particle momenta?
- Agglomeration
 - how do we add transverse momenta?
- Interpretation
 - how do we categorize reconstructed objects?
- Generalization
 - how do we define the most general mass-bound variables?
- Specialization
 - how do we recover the existing variables?
 - illustration: dilepton tt-bar and h->WW examples.

Transversification of 3-vectors

Warm-up exercise: geometrical projection

Transversification of 1+3-vectors

• What to do with the energy (time-like) component?

• Well, isn't it obvious? Not really: there are at least three different options for the "transverse" energy: "T", "V" and "0".

Summary of transverse projections

	Transverse projection method				
Quantity	Mass-preserving ' \top '	Speed-preserving ' \lor '	$\mathbf{Massless} \ `\circ'$		
Original (4)-momentum		$P^{\mu} = (E, \vec{p_T}, p_z)$			
(1+3)-mass invariant		$M=\sqrt{E^2-\vec{p}_T^2-p_z^2}$			
Transverse momentum		$ec{p_T} \equiv (p_x, p_y)$			
(1+2)-vectors	$p^lpha_{ op} \equiv (e_{ op}, ec{p_{ op}})$	$p^lpha_ee\equiv(e_ee,ec{p}_ee)$	$p^{lpha}_{\circ}\equiv (e_{\circ},ec{p_{\circ}})$		
Transverse momentum under the projection	$ec{p_{ op}}\equivec{p_T}$	$ec{p_{ec}}\equivec{p_{T}}$	$\vec{p_{\circ}} \equiv \vec{p_T}$		
Transverse energy under the projection	$e_{\rm T} \equiv \sqrt{M^2 + \vec{p}_T^2}$	$e_{\vee} \equiv E \left \sin \theta \right = \left \vec{p}_T \right / V$	$e_{\circ} \equiv \vec{p_T} $		
Transverse mass under the projection	$m_{\top}^2 = e_{\top}^2 - \vec{p}_{\top}^2$	$m_{\vee}^2 \equiv e_{\vee}^2 - \vec{p}_{\vee}^2$	$m_{\circ}^2 \equiv e_{\circ}^2 - \vec{p}_{\circ}^2 = 0$		
Relationship between	$m_{ op} = M$	$m_{\vee} = M \left \sin \theta \right $	$m_{\circ} = 0$		
transverse quantity and its $(1+3)$ analogue	$\frac{1}{v_{\top}} = \frac{1}{V} \sqrt{1 + (1 - V^2) \frac{p_z^2}{p_T^2}}$	$v_{\vee} = V$	$v_{\circ} = 1$		
Equivalence classes under $(1+3) \xrightarrow{\text{proj}} (1+2)$	All P^{μ} with the same p_x, p_y and M	All P^{μ} with the same p_x, p_y and V	All P^{μ} with the same p_x and p_y		

A guide to existing computer codes

 Both "T" and "V" projections appear to be used in the existing computer libraries and codes

Library	Object	Method/function name							
LIDIALY		$e_{ op}$	$e_{ op}^2$	$m_{ op}$	$m_{ op}^2$	m_{T2}	e_{\vee}	e_{\vee}^2	
CLHEP[36]	LorentzVector	mt()	mt2()	_	_	_	et()	et2()	
ROOT [37]	TLorentzVector	Mt()	Mt2()	_	_	_	Et()	Et2()	
Fastjet $[61]$	Pseudojet	<pre>mperp()</pre>	<pre>mperp2()</pre>	_	_	—	Et()	Et2()	
PGS [62]	_	—	—	_	_	—	v4et(p)	_	
Oxbridge	LorentzVector	ET()	ET2()	LTV().mass()	LTV().masssq()	_	_	_	
M_{T2} [38]	LorentzTransverseVector	Et()	Etsq()	mass()	masssq()	_	_	_	
	Mt2_332_Calculator	_	_	_	_	mT2_332()	_	_	
UCD M_{T2} [39]	mt2	Ea, Eb	Easq, Ebsq	_	_	get_mt2()	_	_	

Agglomeration

 Heavy, promptly, semi-invisibly decaying resonances are reconstructed by agglomerating their daughter particles

- Transverse quantities are constructed by transverse projections
- Which should come first: the projection or the agglomeration? The results are different!

"Early" versus "late" projections

• The order of the operations makes a big difference for the time-like components

$\sum_i \vec{p_{i\top}} = \left(\sum_i \vec{P_i}\right)_\top$	$\sum_{i} e_{i\top} \neq \left(\sum_{i} E_{i}\right)_{\top},$
$\sum_{i} \vec{p}_{i\vee} = \left(\sum_{i} \vec{P}_{i}\right)_{\vee}$	$\sum_{i} e_{i\vee} \neq \left(\sum_{i} E_{i}\right)_{\vee},$
$\sum_{i} \vec{p}_{i\circ} = \left(\sum_{i} \vec{P}_{i}\right)_{\circ}$	$\sum_{i} e_{i\circ} \neq \left(\sum_{i} E_{i}\right)_{\circ}.$

• Our convention: the order of indices (from left to right) denotes the order of operations, e.g.

- add first, project later: $p_{aT}^{\alpha} \equiv (e_{aT}, \vec{p}_{aT})$

- project first, add later: $p_{Ta}^{\alpha} \equiv (e_{Ta}, \vec{p}_{Ta})$

Interpretation (of an event)

Notation for particle momenta:
"P" ("p") for visible daughters
"Q" ("q") for invisible daughters

How to form mass-bound variables

- Goal: find a lower bound on the mass of the heaviest (next-heaviest, etc.) parent
- There are various possibilities:
 - -1 unprojected $\mathcal{M}_a \equiv \sqrt{g_{\mu\nu} \left(\mathbf{P}_a^{\mu} + \mathbf{Q}_a^{\mu}\right) \left(\mathbf{P}_a^{\nu} + \mathbf{Q}_a^{\nu}\right)}$
 - 3 late-projected

$$\mathcal{M}_{aT} \equiv \sqrt{g_{\alpha\beta} \left(\mathbf{p}_{aT}^{\alpha} + \mathbf{q}_{aT}^{\alpha}\right) \left(\mathbf{p}_{aT}^{\beta} + \mathbf{q}_{aT}^{\beta}\right)}$$

- 3 early-projected $\mathcal{M}_{Ta} \equiv \sqrt{g_{\alpha\beta} \left(\mathbf{p}_{Ta}^{\alpha} + \mathbf{q}_{Ta}^{\alpha}\right) \left(\mathbf{p}_{Ta}^{\beta} + \mathbf{q}_{Ta}^{\beta}\right)}$
- Then minimize over the momenta of the invisible particles:

$$M_{N} \equiv \min_{\substack{\sum \vec{q}_{iT} = \vec{p}_{T}}} \left[\max_{a} \left[\mathcal{M}_{a} \right] \right],$$
$$M_{NT} \equiv \min_{\substack{\sum \vec{q}_{iT} = \vec{p}_{T}}} \left[\max_{a} \left[\mathcal{M}_{aT} \right] \right],$$
$$M_{TN} \equiv \min_{\substack{\sum \vec{q}_{iT} = \vec{p}_{T}}} \left[\max_{a} \left[\mathcal{M}_{Ta} \right] \right],$$

The 7 basic mass bound variables

Type of				
variables	First	Second	Third	Notation
Unprojected	Partitioning Minimization —		$M_N \checkmark$	
Early partitioned (late projected) M_{NT}	Partitioning	$T = \top$ projection	Minimization	$M_{N op} \checkmark$
	Partitioning	$T = \lor$ projection	Minimization	$M_{N\vee}$
	Partitioning	$T = \circ$ projection	Minimization	$M_{N\circ} \checkmark$
Late partitioned (early projected) M_{TN}	$T = \top$ projection	Partitioning	Minimization	$M_{\top N} \checkmark$
	$T = \lor$ projection	Partitioning	Minimization	$M_{\lor N}$
	$T = \circ$ projection	Partitioning	Minimization	$M_{\circ N}$ \checkmark

- Can you recognize which one is the Cambridge M_{T2} ?

Example: The unprojected M₁

This is the minimum total invariant mass of the single-parent subsystem

Applications of

Konar, Kong, Matchev 2008

Konar, Kong, Matchev, Park 2010

(b)

800

- N=1: Single semi-invisibly decaying particle
 - SM Higgs to tt-bar
 - endpoint at the parent mass peak at the total parent mass

invisibly decaying particles

N=2: A pair of semi-

direct tt-bar production

120 140 160 180 200 220 240

History repeats but we learn more and understand better

$$\begin{split} M_{T} &= 2 \sqrt{p_{T}^{2}(ll) + m^{2}(ll)}, \\ M_{C} &= \sqrt{p_{T}^{2}(ll) + m^{2}(ll)} + \not{E}_{T} \\ \sqrt{s_{min}^{(sub)}}(\mathscr{M}) &= \left\{ \left(\sqrt{E_{(sub)}^{2} - P_{z(sub)}^{2}} + \sqrt{\mathscr{M}^{2} + \mathscr{P}_{T}^{2}} \right)^{2} - P_{T(up)}^{2} \right\}^{\frac{1}{2}} \\ &= \left\{ \left(\sqrt{M_{(sub)}^{2} + P_{T(sub)}^{2}} + \sqrt{\mathscr{M}^{2} + \mathscr{P}_{T}^{2}} \right)^{2} - P_{T(up)}^{2} \right\}^{\frac{1}{2}} \\ &= \left\{ \left(\sqrt{M_{(sub)}^{2} + P_{T(sub)}^{2}} + \sqrt{\mathscr{M}^{2} + \mathscr{P}_{T}^{2}} \right)^{2} - (\vec{P}_{T(sub)} + \vec{\mathscr{P}}_{T})^{2} \right\}^{\frac{1}{2}} \\ &= \left\{ \left(\sqrt{M_{(sub)}^{2} + P_{T(sub)}^{2}} + \sqrt{\mathscr{M}^{2} + \mathscr{P}_{T}^{2}} \right)^{2} - (\vec{P}_{T(sub)} + \vec{\mathscr{P}}_{T})^{2} \right\}^{\frac{1}{2}} \\ &= \left\{ \left(\sqrt{M_{(sub)}^{2} + P_{T(sub)}^{2}} + \sqrt{\mathscr{M}^{2} + \mathscr{P}_{T}^{2}} \right)^{2} - (\vec{P}_{T(sub)} + \vec{\mathscr{P}}_{T})^{2} \right\}^{\frac{1}{2}} \\ &= \left\{ \left(\sqrt{M_{(sub)}^{2} + P_{T(sub)}^{2}} + \sqrt{\mathscr{M}^{2} + \mathscr{P}_{T}^{2}} \right)^{2} - (\vec{P}_{T(sub)} + \vec{\mathscr{P}}_{T})^{2} \right\}^{\frac{1}{2}} \\ &= \left\| p_{T(sub)} + p_{T}' \right\|, \end{split}$$
Konar, Kong, Matchev, Park, 2008 2010

$$(m_T^{\text{true}})^2 \equiv m_T^2(m_i = 0) = m_v^2 + 2(e_v |\mathbf{p}_i| - \mathbf{p}_v \cdot \mathbf{p}_i)$$
 Barr, Gripaios, Lester 2009, 2011

$$M_1^2(\mathbf{N}_1) \equiv \left(\sqrt{\mathbf{M}_1^2 + \mathbf{p}_{1T}^2} + \sqrt{\mathbf{N}_1^2 + \mathbf{p}_T^2}\right)^2 - u_T^2$$

Barr, Khoo, Konar, Kong, Lester, Matchev, Park 2011

The late "T"-projected variable M_{NT}

 The order is: agglomerate, "T"-project, then minimize over q_{iT} and q_{iz}. First form each parent mass

 $\mathcal{M}_{a\top}^2(\mathbf{p}_{a\top}^{\alpha}, \mathbf{q}_{a\top}^{\alpha}, \tilde{\mu}_a) \equiv (\mathbf{p}_{a\top} + \mathbf{q}_{a\top})^2 \equiv (\mathbf{e}_{a\top} + \tilde{\mathbf{e}}_{a\top})^2 - (\vec{\mathbf{p}}_{aT} + \vec{\mathbf{q}}_{aT})^2$

• Then minimize the largest one:

 $M_{N\top}(\mathbf{M}) \equiv \min_{\sum \vec{q}_{iT} = \vec{p}_{T}} \left[\max_{a} \left[\mathcal{M}_{a\top}(\mathbf{p}_{a\top}^{\alpha}, \mathbf{q}_{a\top}^{\alpha}, \tilde{\mu}_{a}) \right] \right]$

For N=1 the result is

$$M_{1\top}^{2}(\mathbf{M}_{1}) \equiv \left(\sqrt{\mathbf{M}_{1}^{2} + \mathbf{p}_{1T}^{2}} + \sqrt{\mathbf{M}_{1}^{2} + \mathbf{p}_{T}^{2}}\right)^{2} - u_{T}^{2} \equiv \hat{s}_{min}^{(sub)}$$

In general one finds the identity

 $M_{N\top} = M_N$

The early "T"-projected variable M_{TN}

 The order is: "T"-project, agglomerate, then minimize over q_{iT} (there is no q_{iz} dependence).

 $\mathcal{M}_{\top a}^2(\mathbf{p}_{\top a}^{\alpha}, \mathbf{q}_{\top a}^{\alpha}, \tilde{\mu}_a) \equiv (\mathbf{p}_{\top a} + \mathbf{q}_{\top a})^2 \equiv (\mathbf{e}_{\top a} + \tilde{\mathbf{e}}_{\top a})^2 - (\vec{\mathbf{p}}_{aT} + \vec{\mathbf{q}}_{aT})^2$

• Then minimize the largest one:

 $M_{\top N}(\mathbf{M}) \equiv \min_{\sum \vec{q}_{iT} = \vec{p}_{T}} \left[\max_{a} \left[\mathcal{M}_{\top a}(\mathbf{p}_{\top a}^{\alpha}, \mathbf{q}_{\top a}^{\alpha}, \tilde{\mu}_{a}) \right] \right]$

• For N=1 the result is

$$M_{\top 1}^{2}(\mathbf{M}_{1}) = \left(\sum_{i=1}^{N_{\mathcal{V}}} \sqrt{M_{i}^{2} + \vec{p}_{iT}^{2}} + \sqrt{\mathbf{M}_{1}^{2} + \mathbf{p}_{T}^{2}}\right)^{2} - u_{T}^{2}$$

For massless visible particles (leptons or jets)

$$\lim_{M_i \to 0} M_{\top 1}^2 (\mathbf{M}_1) = \left(h_T + \sqrt{\mathbf{M}_1^2 + \mathbf{p}_T^2} \right)^2 - u_T^2$$

Generalized version of Meff

The early "0"-projected variable MON

$$M_{\circ N} \equiv \min_{\sum \vec{q}_{iT} = \vec{p}_{T}} \left[\max_{a} \left[\mathcal{M}_{\circ a}(\mathbf{p}_{\circ a}^{\alpha}, \mathbf{q}_{\circ a}^{\alpha}) \right] \right]$$

The late "0"-projected variable M_{N0}

$$M_{N\circ} \equiv \min_{\substack{\sum \vec{q}_{iT} = \vec{p}_{T} \\ p_{T} = \vec{p}_{T}}} \left[\max_{a} \left[\mathcal{M}_{a\circ} (\mathbf{p}_{a\circ}^{\alpha}, \mathbf{q}_{a\circ}^{\alpha}) \right] \right]$$

$$M_{1\circ}^{2} = \min_{\substack{\sum \vec{q}_{iT} = \vec{p}_{T} \\ p_{T} = \vec{p}_{T}}} \left[(\mathbf{e}_{1\circ} + \tilde{\mathbf{e}}_{1\circ})^{2} - u_{T}^{2} \right]$$

$$= \left(\mathbf{e}_{1\circ} + \min_{\substack{\sum \vec{q}_{iT} = \vec{p}_{T} \\ \vec{q}_{iT} = \vec{p}_{T}}} \left[\left| \sum_{i=1}^{N_{T}} \vec{q}_{iT} \right| \right] \right)^{2} - u_{T}^{2}.$$

$$= \left(\left| \sum_{i=1}^{N_{V}} \vec{p}_{iT} \right| + \vec{p}_{T} \right)^{2} - u_{T}^{2}.$$

$$= \left(\left| \vec{p}_{T} + \vec{u}_{T} \right| + \vec{p}_{T} \right)^{2} - u_{T}^{2}.$$

$$= \left(\left| \vec{p}_{T} + \vec{u}_{T} \right| + \vec{p}_{T} \right)^{2} - u_{T}^{2}.$$

$$= 2 \left(\vec{p}_{T} \cdot (\vec{p}_{T} + \vec{u}_{T}) + \vec{p}_{T} \right| \vec{p}_{T} + \vec{u}_{T} | \right)$$

Which variable is best?

 $M_N = M_{N\top} \ge M_{\top N} \ge M_{\circ N} \ge M_{N\circ}$

- Late (or no) projection gives a better endpoint structure
- Early projection less sensitive to forward hadronic activity

1D decomposition, 2009

(Konar, Kong, Matchev, Park 2009)

- ISR (UTM) increases the MT2max
- No general analytic expression for MT2

$$egin{aligned} M_{T_{\parallel}}^{(i)} &\equiv \sqrt{ ilde{M}_{c}^{2}+2\left(e_{iT_{\parallel}}\sqrt{ ilde{M}_{c}^{2}+|ec{p}_{cT_{\parallel}}^{(i)}|^{2}}-ec{p}_{iT_{\parallel}}\cdotec{p}_{cT_{\parallel}}^{(i)}
ight)}, \ M_{T_{\perp}}^{(i)} &\equiv \sqrt{ ilde{M}_{c}^{2}+2\left(e_{iT_{\perp}}\sqrt{ ilde{M}_{c}^{2}+|ec{p}_{cT_{\perp}}^{(i)}|^{2}}-ec{p}_{iT_{\perp}}\cdotec{p}_{cT_{\perp}}^{(i)}
ight)}, \ M_{T2_{\perp}}(ilde{M}_{c},ec{p}_{iT_{\perp}}) &\equiv \min\left\{\max\left\{M_{T_{\perp}}^{(1)},M_{T_{\perp}}^{(2)}
ight\}\right\}. \qquad \Sigma_{k}(ec{p}_{cT_{\perp}}^{(k)}+ec{p}_{kT_{\perp}})=0; \end{aligned}$$

For one massless visible particle, MT2perp becomes simple

$$M_{T2_{\perp}} = \begin{cases} \tilde{M}_c, & \text{if } \vec{p}_{1T_{\perp}} \cdot \vec{p}_{2T_{\perp}} \leq 0, \\ \sqrt{A_{T_{\perp}}} + \sqrt{A_{T_{\perp}} + \tilde{M}_c^2}, & \text{otherwise,} \end{cases}$$

$$M^{(max)}_{T2_{\perp}}(\tilde{M}_{c}) = \mu + \sqrt{\mu^{2} + \tilde{M}_{c}^{2}}, \qquad \qquad \mu \equiv \frac{M_{p}}{2} \left(1 - \frac{M_{c}^{2}}{M_{p}^{2}}\right).$$

Define:
$$N(\tilde{M}_c) \equiv \sum_{\text{all events}} H\left(M_{T2} - \tilde{M}_p(\tilde{M}_c, 0)\right), \qquad H(x) \equiv \begin{cases} 1, \text{ if } x > 0, \\ 0, \text{ if } x \le 0, \end{cases}$$

 $\tilde{M}_p(\tilde{M}_c, P_T) - \tilde{M}_p(\tilde{M}_c, 0) \ge 0$, $N_{min} \equiv \min\{N(\tilde{M}_c)\} = N(M_c) = 0$.

Type of	Operations				
variables	First	Second	Third	Fourth	Notation
Early partitioned	Partitioning	$T = \top$ projection	$\perp = \top$ projection on T_{\perp}	Minimization	$M_{N \top \perp}$
doubly projected	Partitioning	$T = \lor$ projection	$\perp = \lor$ projection on T_{\perp}	Minimization	$M_{N\vee\perp}$
$M_{NT\perp}$	Partitioning	$T = \circ$ projection	$\bot = \circ$ projection on T_\bot	Minimization	$M_{N \circ \bot}$
Late partitioned,	$T = \top$ projection	$\perp = \top$ projection on T_{\perp}	Partitioning	Minimization	$M_{\top \perp N}$
doubly projected	$T = \lor$ projection	$\perp = \lor$ projection on T_{\perp}	Partitioning	Minimization	$M_{\vee \perp N}$
$M_{T\perp N}$	$T = \circ$ projection	$\bot = \circ$ projection on T_\bot	Partitioning	Minimization	$M_{o\perp N}$
In-between partitioned,	$T = \top$ projection	Partitioning	$\perp = \top$ projection on T_{\perp}	Minimization	$M_{\top N \perp}$
doubly projected	$T = \lor$ projection	Partitioning	$\bot = \lor$ projection on T_\bot	Minimization	$M_{\vee N \perp}$
$M_{TN\perp}$	$T = \circ$ projection	Partitioning	$\perp = \circ$ projection on T_{\perp}	Minimization	$M_{\circ N \perp}$

TABLE IV. An extended version of Table III, containing the additional variables found by including the option of a T_{\perp} projection shown in Fig. 9. An analogous set of variables is obtained by considering a T_{\parallel} projection instead.

Early partition	Hedged partition	Late partition		
$M_{N\top\parallel_{\vee}}\ M_{N\top\parallel_{\circ}}\ M_{N\top\perp_{\vee}},\ M_{N\top\perp_{\circ}}$	$M_{\top N \parallel_{\vee}} \ M_{\top N \parallel_{\circ}}, \ M_{\top N \perp_{\vee}}, \ M_{\top N \perp_{\circ}}$	$M_{\top \parallel_{\vee} N} \; M_{\top \parallel_{\circ} N}, M_{\top \bot_{\vee} N}, M_{\top \bot_{\circ} N}$		
$M_{N \circ \parallel_{\top}} \; M_{N \circ \parallel_{\vee}} \; M_{N \circ \perp_{\top}}, M_{N \circ \perp_{\vee}}$	$M_{\circ N \parallel_{\top}} \ M_{\circ N \parallel_{\vee}}, M_{\circ N \perp_{\top}}, M_{\circ N \perp_{\vee}}$	$M_{\circ \parallel_{\top} N} \; M_{\circ \parallel_{\vee} N}, M_{\circ \perp_{\top} N}, M_{\circ \perp_{\vee} N}$		
$M_{N\vee\parallel_\circ}\ M_{N\vee\parallel_\top}\ M_{N\vee\perp_\circ}, M_{N\vee\perp_\top}$	$M_{\vee N \parallel_{\circ}} \; M_{\vee N \parallel_{\top}}, M_{\vee N \perp_{\circ}}, M_{\vee N \perp_{\top}}$	$M_{\vee \parallel_{\circ} N}\ M_{\vee \parallel_{\top} N}, M_{\vee \perp_{\circ} N}, M_{\vee \perp_{\top} N}$		

TABLE V. The 36 hetrogeneously-doubly-projected transverse mass variables for each N. As was the case in Tables III and IV "partition" means the combined operation of partitioning the objects and agglomerating them by summation into composite objects.

Cambridge M_{T2}-type variables

- The "2" in M_{T2} referred to the number of invisibles
- The "2" here refers to the number of parents

A common framework

	Mass-bound variable						
Existing		N = 1				N = 2	
variable	$M_1(\mathbf{N}_1) = M_{1\top}(\mathbf{N}_1)$	$M_{\top 1}(\mathbf{M}_1)$	M_{o1}	$M_{1\circ}$	$M_2(\mathbf{N} \mathbf{I}) = M_{2\top}(\mathbf{N} \mathbf{I})$	$M_{2\top\perp}(\mathbf{N} \mathbf{I})$	
$2 \not\!\!p_T = 2 \not\!\!\!E_T$				$u_T \to 0$			
$m_{ m eff}$		$N_1 \to 0, u_T \to 0$	$u_T \to 0$				
$\sqrt{\hat{s}_{\min}^{(\mathrm{sub})}}(\mathbf{M}_{1})$	\checkmark						
$\sqrt{\hat{s}}_{\min}(\mathbf{M}_1)$	$u_T \to 0$						
$m_{Te\nu}(M_e, M_{\nu})$	\checkmark	\checkmark	$M_e, M_\nu \to 0$	$M_e, M_\nu \to 0$			
$M_{T,ZZ}(M_Z)$	\checkmark	\checkmark					
$M_{C,WW}$	$N\!\!\!/ \mathbf{I}_1 \to 0$						
$m_T^{ m true}$	$N\!\!\!/ \mathbf{I}_1 \to 0$						
$m_{TZ'}^{reco}(M_Z)$	$u_T \to 0$	$u_T \to 0$					
$m_{T2}(\mathbf{N}\mathbf{I})$					\checkmark		
$m_{T2\perp}(\mathbf{M})$						\checkmark	

All previous variables are just specializations to a specific event topology, massless invisibles or uT=0

Take home lessons

- There are different ways to project on the transverse plane
- Be mindful of the way in which composite particles are agglomerated (before or after T)
- Always think which of the 61 variables is most suited for the particular case at hand
- The early-agglomerated (late-projected) "transverse" variables are "secretly" 1+3 dimensional

 $M_{N\top}(\mathbf{N} \mathbf{I}) = M_N(\mathbf{N} \mathbf{I})$

 The dependence on the unknown masses is only through the N summed-mass parameters

$$M_a \equiv \sum_{i \in I_a} \tilde{M}_i$$

 $m_{eff}^2 - u_T^2$ instead of Meff

• Proposal to use: