

TOTEM status report LHCC 04/12/2013

E. Radicioni INFN

- consolidation and upgrades conceived in the view of
 - past experience
 - future measurements
- analysis highlights

what we have learned

- The experiment has performed beautifully, and in trying to extend its reach we have discovered what should be made better
- during special runs, difficult-to-obtain conditions lead to limited statistics
 - non-standard optics are challenging and higher are the chances of losing the beam
 - close distance of approach and delicate RP alignment procedures
- pile-up and halo backgrounds are the main limiting factor to
 - lowering **t** (at a given β^*) in elastic scattering measurements
 - achievable integrated luminosity in any configuration (standalone and w/CMS)
- The RPs performed as expected w.r.t. RF impedance, but this is not enough if we want to collect larger samples.
- Off-line association of TOTEM and CMS events works nicely but
 - time consuming
 - does not allow to exploit the CMS 2nd level trigger

100/

501 -

~qom)

2000

M_[6.V/21]

1500

Low B". (~0.6 m

Nicolo Cartiglia, INFN, Turin

1000

500

Acceptance HPS Q220

- Low(er) M region and high cross-section channels can be explored with β^{*}=90m @ intermediate luminosity
- Actual acceptance region strongly depends how the RPs approach the beam
- A realistic approach is 20σ

Different LHC Optics

Hit maps of simulated diffractive events for 2 optics configurations

 $\sum \alpha$

Standard low β^* runs:

diffractive protons in horizontal RP

 μ = 25 – 50 (~5 with reduced N_p/bunch)

low cross-section processes (hard diffraction) – continuous running (with reduced N_p/bunch?)

Special high β^* runs:

diffractive protons in vertical RP

 $\mu = 0.05 - 0.5$

high cross-section processes – dedicated short runs with optimized conditions

Running scenarios

β^*	cr. angle	ε_N	N	k	μ	Luminosity	
[m]	$[\mu rad]$	$[\mu m rad]$	$[10^{11} \text{ p/b.}]$	bunches		$[\rm cm^{-2}\rm s^{-1}]$	
2500	0	2	$0.7 \div 1.5$	2	$0.004 \div 0.02$	$(1.2 \div 5.6) \times 10^{27}$	$= (0.1 \div 0.5) \mathrm{nb}^{-1}/24 \mathrm{h}$
90	0	2	$0.5 \div 1.5$	156	$0.06 \div 0.5$	$(1.3 \div 12) \times 10^{30}$	$= (0.1 \div 1) \mathrm{pb^{-1}/24h}$
90	100	2	$0.5 \div 1.5$	1000	$0.06 \div 0.5$	$(0.9 \div 7.7) \times 10^{31}$	$= (0.8 \div 7) \mathrm{pb^{-1}/24h}$
11	$310 \div 390$	$1.9 \div 3.75$	1.15	$2520 \div 2760$	$1.3 \div 2.5$	$(5.3 \div 9.5) \times 10^{32}$	$= (46 \div 82) \mathrm{pb}^{-1}/24 \mathrm{h}$
				$(\Delta t = 25 \mathrm{ns})$			
0.5	$310 \div 390$	$1.9 \div 3.75$	1.15	$2520 \div 2760$	$19 \div 34$	$(0.8 \div 1.3) \times 10^{34}$	$= (0.7 \div 1.1) \text{fb}^{-1}/24 \text{h}$
				$(\Delta t = 25 \mathrm{ns})$			

• Strategy for the future

- consolidate the detectors with the goal of resolving pileup in low- to medium-lumi running
 - multiple tracks and halo background
 - multiple events
- consolidate the RP enclosures
 - better RF behavior
- upgrade the apparatus
 - with rad-hard tracking devices
 - with high-performance timing detectors
- Operate at higher luminosities during special runs and later run in standard LHC fills.

challenges in 3 different running modes

- 1. β^{*}≥0.5km
 - setting-up challenges and very limited running time
 - inefficiencies due to track pile-up (halo) increase with closer approach
- 2. $\beta^*=90m$, intermediate luminosity ($10^{28}\div10^{30}$)
 - wish for moderate pile-up (μ=0.5÷5) and 1000 bunches to overcome statistics limitations (short running periods)
- 3. $\beta^* \approx 0.5m$, high luminosity (10³³÷10³⁴)
 - high (µ≥20) pile-up
 - radiation damage

interventions (in a logical order)

- Consolidate by
 - equipping the present tracking strips with stereo-views (for any $\beta^{\ast})$
 - reduce RF impedance and its consequences
 - removing bottlenecks in the standalone DAQ
 - providing intermediate-performance timing information in vertical pots (β^* =90m)
 - and in addition sending data directly to the CMS DAQ.
- Upgrade (with CMS) by
 - adding specific new RPs for high-performance timing
 - installing radiation-hard pixels for tracking
 - RP enclosures ready by end of LS1, detectors later

Relocation and new configuration

- RP system will consist of 4 RP units/arm, each with 2 vertical + 1 horizontal pots equipped with 10 planes Si-strip detectors, with full trigger capability
- Extreme flexibility in using 4 units according to running scenario; possibility to dedicate pots to new Si-pixel detectors as well as to timing detectors with low material budget

tunnel work (4/5 & 5/6)

Relocated patch panels and cablings

TCL6 region

All service cables laid 147 – 220 All patch panels are relocated

210-220m region

Stereo angles

Current limitation: not able to reconstruct events with ≥ 2 tracks in same pot **Solution: tilt by ~8°** FAR RP station at 210m (ghost tracks suppression)

RF impedance

- new cylindrical RPs
- cylindrical RF shields for "box" RPs
- prototypes ready

- + new ferrites for all RPs. Much higher
 - bakeout temperature: 1000 °C
 - and Curie temperature: 375 °C

Main Timeline for RP service work & re installation in tunnel

TOTEM

Consolidation: Timing in V-RPs. Design constraints

- Scattered protons seen in vertical RPs when $\beta^*=90m$
- Long collision region (50cm) and a worst-case scenario of μ≤5

 Resolution in the range 50÷100 ps
- Optimize the number of TDC channels keeping into account that
 - the hit distribution is anisotropic
 - cell size can be chosen to minimize inefficiency
- "box" enclosures must not be modified
- The best candidate is a diamond detector
 - same form factor as present strip detectors \rightarrow can fit in existing enclosure
 - cell size and shape can be freely obtained by design of the metallization mask
 - credible option for <100ps resolution
- A fast silicon detector option is also being evaluated

Timing in V-RPs: cell design

Cell size and shape designed in order to minimize double-hit inefficiency and limit number of channels Cell DPE inefficiency < 8% @ μ=5

Upgrade: new cylindrical RPs

- Installation of additional horizontal RP to host timing detectors
 - operation at low $\beta^* \rightarrow$ best possible impedance characteristics
 - enough volume in the enclosure to host long Cherenkov detectors
 - \rightarrow cylindrical shape

new RP design with cylindrical head

Movement test of the prototype

Upgrade: new RF shields for H-RPs

- Modification of an existing RP with the addition of a cylindrical RF shield and new ferrites
 - "box" enclosure still suitable for silicon trackers
 - ready for testing/running 3D-pixels with high granularity and radiation tolerance

RF shield and detector box

Movement test of the prototype

Analysis highlights

- A total of 8 physics and 3 technical papers.
- Analyses published since last LHCC:
 - soft DD @ $Vs = 7 \text{ TeV} (\beta^* = 90 \text{ m})$; accepted for publication in PRL
- Analyses with high priority:
 - $dN_{charged}/d\eta @ \sqrt{s} = 8 \text{ TeV}$ with T2 & CMS tracker ($\beta^* = 90 \text{ m}$); Status: CMS & TOTEM collaboration wide review
 - hadronic-Coulomb interference @ $v_s = 8 \text{ TeV} (\beta^* = 90 \text{ and } 1000 \text{ m})$
 - low mass DPE @ \sqrt{s} = 8 TeV (β^* = 90 m); with CMS
- Analyses in advanced stage:
 - SD dijets @ $\sqrt{s} = 8 \text{ TeV} (\beta^* = 90 \text{ m})$; with CMS
 - soft SD @ vs = 7 TeV (β* = 90 m)
 - σ_{inel} @Vs=2.76TeV with T1+T2(β *=11m)
 - large-t elastics with low β^*
- + a host of ongoing analyses both standalone and w/CMS

hadronic-Coulomb interference @ vs = 8 TeV

Conclusions

- TOTEM has devised a comprehensive list of interventions for consolidation and upgrade
- A clear distinction between [large β*,low lumi] and [small β*, high lumi] allows complementary approaches to hardware interventions
- Consolidation operations are proceeding smoothly according to schedule
- Services in view of upgrades will be ready by end of LS1
- Analysis of 2012/2013 data sets proceed steadily, with a first milestone paper together with CMS in its final review process.