Fermion Portal Dark Matter

Yang Bai

University of Wisconsin-Madison

Mitchell Workshop on Collider and Dark Matter Physics

May 13, 2014

with Joshua Berger @ SLAC "quark portal dark matter" arxiv:1308.0612 "lepton portal dark matter" arxiv:1402.6696

Chang, Edezhath, Hutchinson, Luty, 1307.8120 An, Wang, Zhang, 1308.0592 DiFranzo, Nagao, Rajaraman, Tait, 1308.2679 Batell, Lin, Wang, 1309.4462 Papucci, Vichi, Zurek, 1402.2285 Chang, Edezhath, Hutchinson, Luty, 1402.7358 Garny, Ibarra, Rydbeck, Vogl, 1403.4634 Gomez, Jackson, Shaughnessy, 1404.1918

Motivation I

Dark Matter Sector

- ★ Graviton
- ★ Z boson
- ★ Higgs boson
- ★ Z', dilaton, radion ...

Motivation II

4

Dark Matter is important by itself and should deserve attention as much as SUSY.

Ordinary Matter 15.5%

From Planck 2013

Motivation II

4

Dark Matter is important by itself and should deserve attention as much as SUSY.

Ordinary Matter 15.5%

From Planck 2013

Dark Matter@LHC

SUSY@LHC

Motivation III

Weakly-interaction massive particle provides an excellent motivation

But, we should not be limited by WIMP's

Motivation III

Weakly-interaction massive particle provides an excellent motivation

But, we should not be limited by WIMP's

WIMPZILLAS

hep-ph/9810361 Kolb, Chung, Riotto

Figure 7. Dark matter may be much more massive than usually assumed, much more massive than wimpy WIMPS, perhaps in the WIMPZILLA class.

Motivation IV - Validation of EFT

Motivation V

The SUSY searches are still relevant for many DM models

1305.6921, Cahill-Rowley, Cotta, Drlica-Wagner, Funk, Hewett, Ismail, Rizzo, Wood

Motivation V

The SUSY searches are still relevant for many DM models

Motivation V

The SUSY searches are still relevant for many DM models

Figure 3: Bino-squark coannihilation benchmark sparticle spectrum.

Fermion Portal Dark Matter

Conserving the Lorentz symmetry, at least two particles in the dark matter sector are required

a Majorana or Dirac Fermion or a scalar dark matter

Fermion Portal Dark Matter

Conserving the Lorentz symmetry, at least two particles in the dark matter sector are required

a Majorana or Dirac Fermion or a scalar dark matter

at the LHC

10

Quark Portal Dark Matter

two jets + MET

Quark Portal Dark Matter

two jets + MET

QCD and Yukawa Interference

interesting deconstructive interference region

Current Allowed Parameter Space

Majorana fermion dark matter

up-quark

Compare tø Direct Detection

up-quark

MET Distribution in mono-jet

Lepton Portal Dark Matter

 $\mathcal{L}_{\text{fermion}} \supset \lambda_i \phi_i \overline{\chi}_L e_R^i + \text{h.c.},$

 we will consider flavors one by one for Dirac fermion, Majorana fermion and complex scalar dark matter

Thermal Relic Abundance

$$\frac{1}{2} (\sigma v)_{\text{Dirac}}^{\chi\bar{\chi}} = \frac{1}{2} \left[\frac{\lambda^4 m_{\chi}^2}{32 \pi (m_{\chi}^2 + m_{\phi}^2)^2} + v^2 \frac{\lambda^4 m_{\chi}^2 (-5m_{\chi}^4 - 18m_{\chi}^2 m_{\phi}^2 + 11m_{\phi}^4)}{768 \pi (m_{\chi}^2 + m_{\phi}^2)^4} \right] \equiv s + p v^2,$$

 $\langle v^2 \rangle \sim \mathcal{O}(0.1)$ at freeze-out $\langle v^2 \rangle \sim \mathcal{O}(10^{-6})$ at current time

Thermal Relic Abundance

 the degenerate region (the diagonal line) requires more a careful co-annihilation calculation, which has been ignored here

Dark Matter Direct Detection

- scattering off electrons at the target is suppressed by the electron wave function
- * scattering off nucleons requires one-loop process

 $\mathcal{O}_{1}^{\text{Dirac}} = \left[\overline{\chi} \gamma^{\mu} (1 - \gamma^{5}) \partial^{\nu} \chi + \text{h.c.} \right] F_{\mu\nu}$ $\mathcal{O}_{2}^{\text{Dirac}} = \left[i \overline{\chi} \gamma^{\mu} (1 - \gamma^{5}) \partial^{\nu} \chi + \text{h.c.} \right] F^{\alpha\beta} \epsilon_{\mu\nu\alpha\beta}$ $\mathbf{charge+magnetic \ dipole}$ $\mathcal{O}_{1}^{\text{Majorana}} = \left[-\overline{\chi} \gamma^{\mu} \gamma^{5} \partial^{\nu} \chi + \text{h.c.} \right] F_{\mu\nu}$ $\mathbf{anapole \ moment}$

$$\mathcal{O}_1^{\text{Complex}} = \partial^{\mu} X \partial^{\nu} X^{\dagger} F_{\mu\nu}$$

charge radius

Dark Matter Indirect Detection

★ a model is excluded if the predicted total positron flux is 2 sigma in excess of the measured by AMS-02 in any energy bin **Production at the LHC**

- Fermion DM: the complex scalar mediator production (the same as the right-handed selectron one in SUSY)
- Complex scalar DM: vector-like fermion mediators with larger cross sections

pt(j) > 20 GeV jet veto

Tail of the Leptonic MT2

$$F(M_{T2}) = \frac{N_0}{\left[\eta M_{T2}^2 - M_W^2\right]^2 + \eta^2 M_{T2}^4 \Gamma_W^2 / M_W^2}$$

the tail can be fitted by a Breit-Wigner formula

Status for Fermion DM

Status for Fermion DM

for Majorana DM: suppressed signatures for indirect detection and direct detection [$O(10^{-49} \text{ cm}^2)$]; only the LHC provides useful constraints

Status for Complex Scalar DM

* the indirect detection is also p-wave suppressed

 much wider range of parameter space to be explored by the I4 TeV LHC

Conclusions

- ★ More searches for simplified non-SUSY dark matter models should be performed at the LHC
- The lepton portal dark matter provides a useful reference model for comparing collider, direct and indirect searches of dark matter
- The dilepton MT2 tail can be fitted by a simple Breit-Wigner formula
- The I4 TeV LHC could have a large chance to discover the lepton portal dark matter

Muon (g-2)

 $\mathcal{L}_{\text{scalar}} \supset \lambda_i X \overline{\psi}_L^i e_R^i$ $\mathcal{L}_{\text{fermion}} \supset \lambda_i \phi_i \overline{\chi}_L e_B^i$

Lepton anomalous magnetic moment:

 $a_{\mu} \equiv (g-2)_{\mu}/2$

 $a_{\mu}^{\text{EXP}} = (11659208.9 \pm 6.3) \times 10^{-10}$ hep-ex/0602035, Muon G-2 Collab. $a_{\mu}^{\text{SM}} = (11659182.8 \pm 4.9) \times 10^{-10}$ I I 05.3149, Hagiwara et. al.

$$a_{\mu}^{\rm EXP} - a_{\mu}^{\rm SM} = (26.1 \pm 8.0) \times 10^{-10}$$

may need a positive contribution from new physics

Muon g-2

fermion dark matter

scalar dark matter