H125 Higgs boson studies with the CMS Detector

- Observation/search channels
- Properties
 - mass
 - quantum numbers
 - couplings
 - width
- Prospects

LHC Run I CMS dataset

CMS Integrated Luminosity, pp, 2012, $\sqrt{s}=$ 8 TeV

recorded:
 94% of delivered

validated for physics:
 95% of recorded

H125: status of Run I legacy results

			g g g g fusion	q w,z q w,z WW, zz fusion q	q WZ WZ H ⁰ W, Z bremsstrahlung	g g g cooccoso t t fusion
			ggF (19.5 pb)	VBF (1.6 pb)	VH (1.1 pb)	ttH (0.1 pb)
	Decay	Decays		"VBF tag"	"VH tag"	"ttH tag"
*	$ZZ \rightarrow 4I$	0.00014	publi	shed		
*	γγ	0.0023		Jary		
*	$WW \rightarrow IvIv$	0.0028		imir		
*	π	0.062		prel		
*	bb	0.56	not feasible in progress		published	
*	μμ	0.00021	preliminary			
	$Z\gamma ightarrow 2I\gamma$	0.00011	published			
	γ*γ → 2μ γ	2 × 10 ⁻⁵	preliminary			
	invisible	0.0012	not feasible publish		ished	
	other (gg, cc,)	0.37				

- cross sections (fb) are for 8 TeV

- BEWARE: Tags are never pure; e.g. VBF-tags can have 20%-80% of ggF, depending on analysis

$H \rightarrow ZZ \rightarrow 4I$

$H \rightarrow ZZ \rightarrow 4I$

published

Strategy:

- four prompt leptons (low p_T is important!)
- split events into 4e, 4μ , $2e2\mu$ channels:
 - different mass resolutions
 - different S/B rates (for reducible bkgd with "fake" leptons)
- four-lepton mass is the key observable
- add ME-based discriminant D_{bkg} (2nd observable)
- split events further into exclusive categories:
 - VBF-like di-jet tagged (add a 3^{rd} observable: $V_D(m_{jj}, \Delta \eta_{jj})$)
 - untagged (add a 3rd observable: four-lepton p_T/m)
- Backgrounds:
 - ZZ (dominant) from MC
 - reducible (with "fake" leptons): from control region

Analysis features to note:

- small event yield: 20 events
- high S/B-ratio: better than 2:1
- good mass resolution = 1-2%

$H \rightarrow ZZ \rightarrow 4I$: results

published

- solid observation in the $H \rightarrow ZZ \rightarrow 4I$ decay mode alone
- ME discriminant boosts sensitivity by 20%
- di-jet tag does not help much in sensitivity (too few expected events)
- ZZ→4I channel provides the most accurate mass measurement (using per-event mass uncertainties improves the mass measurement by about 8%)
- $Z \rightarrow 4I$ standard candle allows one to validate absence of biases in the mass measurements
- signal strength is about equal to the expected for the SM Higgs boson
- direct width measurement is limited by the experimental mass resolution, much worse than Γ_{SM} = 4 MeV

$H \rightarrow \gamma \gamma$

$H \rightarrow \gamma \gamma$

preliminary

Final results will be released shortly

• Strategy:

- two isolated high-p_T photons

- di-photon mass is the key observable
- split events into exclusive categories:
 - untagged, and further divided into 4 classes based on
 - expected mass resolution
 - expected S/B-ratio
 - di-jet tagged, and further divided into 2 classes based on

 expected S/B-ratio
 - MET-tagged
 - electron-tagged
 - muon-tagged
- background: from m_{vv}-distribution sidebands

Two versions of analysis:

- MVA for photon-ID and event classification
- Cuts for photon-ID and event classification
- Analysis features to note:
 - fairly high event yield: 470 events
 - bad "effective" S/B-ratio: 1:20
 - good mass resolution = 1-2%

$H \rightarrow \gamma \gamma$: results

preliminary

Final results will be released shortly

Summary:

- significance is reduced compared to 2012:
 - ICHEP 2012 (10 fb⁻¹): **observed = 4.1**, expected = $2.7 (\pm 1)$
 - 2013 (25 fb⁻¹): **observed = 3.2**, expected = 4.2 (±1)
 - fewer than expected signal-like events in new data (luck) plus a re-optimized analysis (event reshuffle)

127

- the expected sensitivity evolves as sqrt(L)
- signal strength is consistent with SM: $\mu = 0.78 \pm 0.27$ ٠
- improving mass measurement systematics is important ($\delta m_{syst} > \delta m_{stat}$)

$\mathrm{H} \rightarrow \mathrm{WW} \rightarrow \mathrm{Ivlv}$

$\mathrm{H} \rightarrow \mathrm{WW} \rightarrow \mathrm{IvIv}$

published

Analysis strategy:

- two prompt leptons (ee, μμ, eμ) + MET
- main discriminating observables: m_τ, m_{II}
- split events into exclusive categories:
 - untagged: 0- and 1-jet categories: expect 252 evts
 - VBF di-jet tag: 8 events
 - VH di-jet tag: 8 events
 - WH -> 3l3v tag: 4 events
 - ZH -> 3l1v + di-jet: **1 event**
- Backgrounds (for low mass Higgs):
 - WW, tt, W+jets, DY+jets, Wγ: from control regions
 - ZW, ZZ: from MC (very small contribution)

Analysis features to note (m_H=125):

- fair signal event yield: 270
- not too good "effective" S/B-ratio: 1:10
- poor mass resolution: ≈20%

published

$H \rightarrow WW \rightarrow IvIv$: results

Andrey Korytov (UF)

College Station, TX, May 12, 2014

$H \rightarrow \tau \tau$

$H \rightarrow \tau \tau$

Strategy:

- di-tau candidates $LL' = (e\tau_h, \mu\tau_h, e\mu, ee, \mu\mu, \tau_h\tau_h) + MET$
- DiTau mass (including MET): key observable
- split events into categories:
 - **2-jets (VBF-tag)**: best S/B-ratio; further split into tight/loose VBF
 - **1-jet (ggF)**: acceptable S/B-ratio; further split into high/low p_T tau
 - **untagged:** ggF, but S/B≅0 (basically, a control region)
 - WH-tag: *lv*+Lτ_h (good S:B, but very few events)
 - **ZH-tag:** *ll*+*LL*' (good S:B, but very few events)
- Main backgrounds:
 - $Z \rightarrow \tau \tau$: $Z \rightarrow \mu \mu$ (data) with a simulated $\mu \tau$ swap
 - Z→ee, W+jets, ttbar: MC for shapes, data for normalization
 - QCD: from control regions
 - di-boson: from MC
 - H→WW (relevant only for VH tags)

Analysis features to note:

- small signal event yield: tens of events
- poor "effective" S/B-ratio: 1:50
- Higgs boson "blip" is on the falling slope of the Z peak
- mass resolution: 10%(τ_hτ_h), 15%(*l*τ_h), 20%(*ll*)

published

$H \rightarrow \tau \tau$: results

- broad 3σ access (poor mass resolution), consistent with SM Higgs boson
- signal strength for $m_H = 125$ GeV: $\mu = 0.8 \pm 0.3$
- 0/1-jet channel has a max sensitivity, VBF—the next best
- − H \rightarrow ττ standalone best-fit mass: **m_H** = **128** ± 6 GeV

VH, $H \rightarrow bb$

CMS Experiment at LHC, CERN Data recorded: Mon Jun 27 02:59:42 2011 CEST Run/Event: 167807 / 149404739 Lumi section: 134 Orbit/Crossing: 35103256 / 2259

VH, H \rightarrow bb

published

• Strategy:

- Two b-tagged jets
- split events into categories:
 - Z(vv)-tag: 29 events
 - Z(II)-tag: 12 events
 - W(lv)-tag: 17 events
 - W(τ_hv)-tag: 1 event
- split event further by $p_T(V)$
 - higher pT(V): better S:B, better δm_{bb}
- key observable:
 - Final BDT of many observables
 - bb di-jet mass in the crosscheck analysis
- Main backgrounds:
 - V + b-jets, ttbar, single top: from control regions
 - di-boson: from MC

• Analysis features to note:

- largely BDT-based analysis
- small signal event yield: 60 events
- poor "effective" S/B-ratio = 1:20
- mass resolution: 10%

VH, $H \rightarrow bb$

published

- broad 2σ-excess consistent with the SM Higgs boson
- signal strength: $\mu = 1.0 \pm 0.5$
- standard candle $qq \rightarrow VZ \rightarrow V+(bb)$ allows one to validate the analysis

Н→μμ

preliminary

CMS Preliminary S/(S+B) Weighted Events/1.0 GeV/c² 9000 √s=7 TeV L = 5.0 fb 8000 √s=8 TeV L = 19.7 fb 7000 3000 5000 4000 3000 2000 1000 <u>Data-Fit</u> VFit ĭ10 120 150 160 130 140 M(μμ) [GeV/c²] CMS Preliminary Combination 40 95% CL Limit on σ/σ_{SM} (H→μμ) $\sqrt{s} = 7$ TeV L = 5.0 fb ⁻¹ 35 –√s = 8 TeV L = 19.7 fb ⁻¹ 30 25 20 15 10 5 ot. 140 150 120 130 m_µ [GeV/c²]

• Strategy:

- two isolated high-p_T muons
- di-muon mass is the key observable
- split events into exclusive categories:
 - di-jet tagged:
 - tight VBF-like, ggF-like, loose
 - untagged:
 - high p_T(μμ), further divided into 6 classes based on the expected di-muon mass resolution
 - low p_τ(μμ)
- background:
 - dominated by Drell-Yan
 - fit of the $m_{\mu\mu}$ -distribution sidebands

Analysis features to note:

- small signal: ~45 events
- bad "effective" S/B-ratio: ~1:150
- good mass resolution = 1-2%

- observed limit on signal strength μ <7.4 (expected 5.1)
- confirmed non-universality of Higgs boson couplings to different fermion generations! (If H coupled to muons and taus with the same strength, we'd expect to see $\mu \sim O(100)$ for di-muon decays.)
- naively, we need 25 times more data to reach a 2σ-sensitivity for the SM Higgs boson

Final results will be released shortly

H125 GeV: summary by decay mode

Observation in good mass resolution channels:

\checkmark ZZ \rightarrow 4I	6.8 σ	μ = 0.93 ± 0.27	
√ үү	3.2 σ	μ = 0.78 ± 0.27	[preliminary]

Observation in poor mass resolution channels (at m_H=125):

✓	ww → lvlv	4.3 σ	μ = 0.72 ± 0.19
✓	π	3.2 σ	μ = 0.78 ± 0.27
✓	bb	2.1 σ	μ = 1.0 ± 0.5

Rare decay searches:

- \circ H → µµ (2nd generation fermions)
- $\circ H \rightarrow Z\gamma \rightarrow H\gamma$
- $\circ H \rightarrow \gamma^* \gamma \rightarrow \mu \mu \gamma$
- $H \rightarrow invisible$

 $\mu < 7.4$ [preliminary] $\mu < 10$ $\mu < 11$ [preliminary] B(H \rightarrow inv) < 0.58 (=10⁻³ for SM Higgs)

ttH production search

preliminary

Channels included in the grand ttH analysis

- H→bb
- н→үү
- Η→ττ
- multileptons (WW, ZZ, ττ)

- difficult!
- very small cross section
- collect many channels (small event yields, poor S/B ratios)
- expected sensitivity about 1.2σ
- broad 2.7σ excess (1.5σ upward fluke? 6% compatibility with the SM Higgs boson)
- signal strength: $\mu = 2.5 \pm 1.0$
- the only definitive statement: signal strength μ < 4.2 at 95% CL

• Observation/search channels

• Properties

- mass
- quantum numbers
- couplings
- width
- Prospects

Combined ZZ + yy mass measurement

• A narrow resonance is seen with high significance in the two good mass resolution channels, ZZ(4I) and γγ

 ZZ(4I): March 2013 $m_{\chi} = 125.8 \pm 0.5 \text{ (stat)} \pm 0.2 \text{ (syst)}$ GeV

 FINAL
 $m_{\chi} = 125.6 \pm 0.4 \text{ (stat)} \pm 0.2 \text{ (syst)}$ GeV

 main sources of systematic uncertainties:

- electron energy scale: 0.3%
- muon energy scale: 0.1%
- $γ\gamma$: March 2013 m_{χ} = 125.4 ± 0.5 (stat) ± 0.6 (syst) GeV FINAL awaiting... main sources of systematic uncertainties:
 - electron-photon extrapolation
 - E_{T} scale extrapolation from $m_{7}/2$ to $m_{H}/2$
- Results are consistent with one particle X
 - ightarrow proceed with a combined mass measurement
 - ightarrow do not assume that ZZ and $\gamma\gamma$ event rates are tied by SM

March 2013 $m_x = 125.7 \pm 0.3$ (stat) ± 0.3 (syst) GeV

Spin-parity tests

H→ZZ→4I

- 4l system is fully reconstructed
- use leptons' momenta to compute matrix elements

H→WW→lvlv

dilepton angle is sensitive to spin of the original H-boson

Н→үү

- J=1 forbidden (Landau-Yang theorem)
- $-\cos\theta^*$ is the only variable sensitive to J^P information at leading order

- before acceptance
 and reconstruction
 after acc x reco, discrim.
 power lessens
- poor S:B makes measurements difficult

Spin-parity results

published

ZZ	0.09%	7.1%	0.001%	0.03%	1.9%	0.03%	0.9%	3.1%	1.7%
WW	35%				16%	0.2%			
γγ			forbi	dden	poor se	nsitivity			

- 0^{-} , 1^{\pm} , five J=2 models excluded at 95% CL or higher
- 0_h^+ on a borderline of being excluded
- data are better than $\pm 2\sigma$ compatible with 0⁺ in all tests performed so far
- more results on other spin-two models are coming soon...

Combination: Production × Decay

7 + 1 = 8 independent parameters to describe all currently relevant decays and production mechanisms:

$$\sigma(xx \to H) \cdot BR(H \to yy) \quad \propto \quad$$

$$\frac{\Gamma_{xx} \cdot \Gamma_{yy}}{\Gamma_{\text{TOT}}}$$

Γ_{ww}

- Γ_{zz}
- Γ_{bb}
- Г_т
- $-\Gamma_{vv}$ (loop induced)
- $-\Gamma_{gg}$ (loop induced)
- Γ_{tt}
- $-\Gamma_{TOT} = \Gamma_{WW} + \Gamma_{ZZ} + ... + \Gamma_{BSM}$

	untagged	VBF-tag	VH-tag	ttH-tag
WW	 Image: A set of the set of the	✓	 Image: A start of the start of	V
ZZ	 Image: A start of the start of	✓		V
bb			>	✓
ττ	 Image: A start of the start of	>	✓	~
γγ	✓	 Image: A set of the set of the	>	V
Ζγ	V	V		
μμ	V	V		
invisible		~	~	

gray: not yet used in combination

Couplings: compatibility with SM

preliminary

- B(H→BSM)=0
- couplings to the 1st, 2nd, 3rd generations are modified the same way

- Good compatibility with the SM Higgs couplings (current accuracy: 20-50%)
- NB: range of couplings tested is O(100); O(1000) with $H \rightarrow \mu\mu$ included

Couplings: search for new physics

preliminary

- $-\kappa_{g}$ and κ_{v} remain to be close 1, implying no new physics in the loops
- accuracy on the top-quark coupling is now solely defined by the ttH analysis

Couplings: search for new physics

preliminary

Assume: $k_v \le 1$

- some constrain is needed to remove the degeneracy in $\sigma(xx \to H) \cdot BR(H \to yy) \propto \frac{\Gamma_{xx} \cdot \Gamma_{yy}}{\Gamma}$
- $k_v \le 1$ is natural: $k_v > 1$ overshoots the unitarity recovery in WW scattering with no remedy

Result: B(H→BSM) < 0.62

NB: With all other couplings \sim SM-like, this implies that $\Gamma_{TOT} < \Gamma_{SM}/(1-0.62) \sim 2.5 \Gamma_{SM}$ [this is a back-of-envelope estimate; the actual result will come out in near future]

Andrey Korytov (UF)

Width limits from off-shell $H^* \rightarrow ZZ$

Final results will be released shortly

preliminary

• Breit-Wigner production $gg \rightarrow H \rightarrow ZZ$ (up to partonic luminosities)

$$\frac{d\sigma_{\rm gg \rightarrow H \rightarrow ZZ}}{dm_{ZZ}^2} \propto g_{\rm ggH}^2 g_{\rm HZZ}^2 \frac{F(m_{ZZ})}{(m_{ZZ}^2 - m_{\rm H}^2)^2 + m_{\rm H}^2 \Gamma_{\rm H}^2}$$

• On-peak and off-peak cross sections:

 $\sigma_{\rm gg \to H \to ZZ}^{\rm on-peak} \propto \frac{g_{\rm ggH}^2 g_{\rm HZZ}^2}{\Gamma_{\rm H}}, \quad \sigma_{\rm gg \to H \to ZZ}^{\rm off-peak} \propto g_{\rm ggH}^2 g_{\rm HZZ}^2$

- The off-peak to on-peak ratio is proportional to Γ_H
- CAVIATS IN REAL LIFE ANALYSIS:
 - evolution of $g_{ggH}(m_{H^*})$ depends on what is in the loop \rightarrow assume top-loop dominance
 - assume that ggF and VBF are dominant production mechanisms (relative role can be extracted from on-peak analysis)
 - off-peak production depends strongly on tensor structure of HZZ \rightarrow assume SM-like 0⁺
 - must include negative interference between $gg \rightarrow H \rightarrow ZZ$ and $gg \rightarrow (box) \rightarrow ZZ$

Width limits from off-shell $H^* \rightarrow ZZ$

Final results will be released shortly

preliminary

Analysis strategy:

- for large Γ_H, expect an excess of events at high m_{zz}
- for $H \rightarrow ZZ \rightarrow 4I$, use ME discriminant (gg $\rightarrow ZZ$ vs qq $\rightarrow ZZ$) to improve sensitivity
- add $H \rightarrow ZZ \rightarrow 2l_{2v}$ for probing off-shell production rate at high m_{zz}

Results: $\Gamma_{\rm H} < 4.2 \ \Gamma_{\rm SM}$

- Observation/search channels
- Properties
 - mass
 - quantum numbers
 - couplings
 - width
- Prospects

Projections: couplings

CMS Projection

CMS Projection

Extrapolation scenarios:

- assume the same CMS performance (efficiencies, resolutions, etc.) as achieved in the 8 TeV Run
- scenario 1: keep all syst. uncertainties unchanged
- scenario 2: all instr. syst. uncertainties scaled as 1/sqrt(L); theoretical uncertainties are halved

- expected measurement precision for Higgs boson couplings: $\delta \kappa \sim 2-5\%$ (10% for ttH)
- **B(H→BSM) < 0.07** at 95% CL
- theory uncertainties must be decreased to be on par with the expected experimental precision

Projections: anomalous spin-zero tensor structure ($H \rightarrow 4I$)

Summary:

- Detecting "anomalous" A₃ term would likely imply a new portal for CP violation (SM-induced "anomalous" A₃ terms are immeasurably small)
- SM-induced "anomalous" A₂ terms are small,
 O(10⁻²), but perhaps measurable for γ*γ* and Zγ*
- Should we detect a sizable A₂ or A₃ term, BSM physics would be in order
- The first stub by CMS:

$$\left| \frac{A_3^{ZZ}}{A_1} \right| < 5.2 \text{ at } 95\% \text{ CL}$$

Andrey Korytov (UF)

College Station, TX, May 12, 20

- The H125 GeV is by now established in many individual decay channels:
 ZZ (6.8σ), WW (4.3σ), γγ (3.2σ), ττ (3.2σ), bb (2.1σ)
- New boson's mass: $m_x = 125.7 \pm 0.4 \text{ GeV}$ (from ZZ+ $\gamma\gamma$ channels)
- Is H125 boson the SM Higgs boson?
 - event yields in all individual channels are consistent with the SM Higgs boson
 - couplings agree with the SM Higgs with the current statistical accuracy (20-50%)
 - J^{CP} = 0⁻, 1[±], and a number of J=2 states are excluded at >95% CL or higher
- As far as H125 boson is concerned, it certainly looks mostly like SM Higgs
- We are at the beginning of the long haul program of **precision measurements of Higgs boson properties** with a hope to pin down small deviations from the SM
- And there is always a chance to find more scalars...