CMS SUSY Searches with Higgs in the Final States

Mitchell Workshop Texas A&M University May 12, 2014

Sunil Somalwar Rutgers, the State University of New Jersey USA

Outline

- "Why SUSY?" by analogy (theorists can ignore this)
- SUSY battle, the higgsino frontier \rightarrow h+X searches
 - Strong production (very briefly)
 - Strong vs weak production:
 - "Natural" higgsino: higgsino + 3rd generation
 - Electroweak ("ElectroHiggs") production
 Higgs is the best EWSB exploration tool we have.
 - Omnibus ElectroHiggs search scheme
- BSM (SUSY/non-SUSY) with higgs in the final state
 - 2HDM, t \rightarrow ch (If time permits) (See A. Perieanu, Tuesday)
- Speculation: SUSY, if alive, is well.
 - Stau (N)NLSP

Searching for SUSY

Latest results from CMS:

https://twiki.cern.ch/twiki/bin/view/CMSPublic/Physics ResultsSUS

(or search for "cms susy results")

Conventional "SUSY 101"

If R-Parity is conserved, provides Dark Matter Candidate (Lightest Supersymmetric Particle or LSP)

• R-parity = $(-1)^{3(B-L)+2s} \rightarrow R = +1$ (-1) for SM (SUSY) particles

Supersymmetry Motivation by Analogy

Doubling the spectrum (particle \rightarrow sparticle) is a big price!

- →Worked once before: Assembling the electron (Murayama, TASI Lectures) Electron q=1.6x10⁻¹⁹ Coul, radius < 10⁻¹⁹m
 - [200GeV ~ 10⁻¹⁸m \rightarrow r_e < 10⁻¹⁸m (from g_e), LEP 2006: 10 TeV contact interaction \rightarrow r_e < 10⁻²⁰m]

 $E_{assembly} \sim +q^2/r_e \sim 10,000 \text{ MeV}$ but $m_e \sim 0.5 \text{ MeV}$

→ Large <u>negative</u> correction

m_e = 0.5 MeV = -9999.5 MeV + 10,000 MeV

FIX: Double the particle spectrum! positron i.e., new physics at ~2m_e ~1MeV~200fm Weisskopf (1939): $E_{assembly} \sim +q^2/r_e$ cancelled by $E_{vacuum pair} \sim -q^2/r$ (e⁺ from vacuum) $(m_ec^2)_{obs} = (m_ec^2)_{bare} \left[1 + \frac{3\alpha}{4\pi} \log \frac{\hbar}{m_ecr_e}\right]$ 5 TexasA&M-May14 CMS SUSY-Higgs Sunil Somalwar

Occam's Razor: Particle Physics Version

We like doubling the particle spectrum.

Single Blade (electron)

Twin Blade (electron & positron)

6 TexasA&M-May14

CMS SUSY-Higgs

Sunil Somalwar

SUSY: Why?

Today: Higgs has the same "hierarchy problem".

Radiative loops: $M_H \sim 10^{15}$ GeV, but Higgs at 100 GeV (EW scale)

Delicate cancellations at high energy

<u>OR</u> SUSY at TeV scale

• hierarchy problem solution \rightarrow stop loops cancel the top loops

But SUSY is badly broken. m(selectron) >> 0.5MeV

SUSY-Breaking Defines Phenomenology

 Signatures depend on SUSY breaking, mass hierarchy and mixing

General prejudice: RGE running \rightarrow

- Strongly interacting particles heavy
- Weakly interacting (middle)

e.g. with R-parity, Stable Lightest Supersymmetric Particle (LSP)

- Missing E_T (MET) signature (from LSP and neutrinos)
- → BUT many mass spectrum variations leading to rich search topology space.

"Natural" SUSY Scenarios

- Hierarchy problem:
 - Higgs mass at the weak scale despite divergent corrections from top loops
 - Large cancelations are unnatural
- Solution:
 - SUSY could make this natural
 - top squark adds canceling terms
 - gluino mass should not be too large also so no contributions to the top squark are controlled.
- Leads to "natural" SUSY spectrum:
 - 3rd generation squarks part of "nuclear family", while the other generations can be heavy and decoupled
 - Some charginos and neutralinos (the higgsinos) at ~ the weak scale.

R.Barbieri & D.Pappadopulo JHEP 0910:061,2009

CMS SUSY-Higgs

Sunil Somalwar

SUSY Particle Production at the LHC

- Gluinos, 1st & 2nd generation squarks
 - High cross sections
 - Thermal Detection ©
 - 3rd generation squarks (stops, sbottoms)
 - Moderate cross sections
- 100 events Charginos, neutralinos, sleptons (higgsinos)
 - Small cross sections, but less SM background.

CMS = Compact MUON solenoid

SUSY hypotheses \rightarrow signatures

Lumi section: 103

Topology oriented signatures with these objects:

- Jets: N-jets, N-b-jets, jet p_T
- Leptons: e, mu, tau-had, SS, OS, on/off-Z
- **Photons**

\rightarrow Map onto:

- HT, MET, ST
- Clever variables (Razr etc),
- Opaque variables (Neural Networks,...)

CMS SUSY-Higgs

CMS-PAS-SUS-12-024

Next

SUSY strong production \rightarrow higgs + X (very briefly)

Strong production: stop2 \rightarrow stop1 + H/Z ("Natural")

Very specific signature \rightarrow Rich final state!

N_ℓ	Veto	N _{b jets}	$N_{ m jets}$	$E_{\rm T}^{\rm miss}$ [GeV]	Additional requirements [GeV]			
1	track or $\tau_{\rm h}$	= 3	≥ 5	> 50	$m_{\rm T} > 150$			
	n	≥ 4	≥ 4	—	$m_{\rm T} > 120$			
2 OS	extra e/ μ	=3	\geq 5	> 50	$(N_{12} - 1)$ with $100 \le m_{12} \le 150$ N ₁₂ > 2			
		≥ 4	≥ 4	<u>~</u> 50	$(N_{bb} = 1 \text{ while } 100 \le m_{bb} \le 100), N_{bb} \le 2$			
2 66	antra a / 11	= 1	[2, 2] > 4	[E0 120] > 120	for low (high $m \in H \subset [200, 400] > 400$			
2 55	extra e/ µ	≥ 2	$[2, 3], \ge 4$	$[50, 120], \ge 120$	for low / high- $p_{\rm T}$: $n_{\rm T} \in [200, 400], \ge 400$			
		= 1	[2, 2] > 4					
≥3	—	= 2	$[2, 3], \ge 4$	$[50, 100], [100, 200], \ge 200$	for on/off-Z: $H_{\rm T} \in [60, 200], \ge 200$			
		≥ 3	≥ 3					
_								

14 TexasA&M-May14 CMS SUSY-Higgs Sunil Somalwar

CMS SUS-13-024

CMS

Next

Natural higgsino (3rd gen), strong vs weak. (In detail, then pure electroweak-electroHiggs.)

BUT

First introduce the CMS inclusive multilepton search. It forms the backbone of these searches.

CMS Inclusive Multilepton Search

- Three or more $e/\mu/\tau,$ at least two (e/ $\mu)$

- Bin in lepton number, flavor (e/ μ Or $\tau_{hadronic}$), b-jets, opposite-sign same-flavor pairs, MET, HT and dilepton pair mass (on-above-below Z).
- SM backgrounds using data-driven methods for Z+jets, τ and internal γ conversions, validated MC for ttbar, WZ and rare SM such as ttV.
- Many SUSY interpretations including natural Higgsino, GMSB, SMS and also top → charm+higgs, 2HDM etc

τ 's in CMS (This is Texas A&M!)

- Leptonic BR($\tau \rightarrow$ e/mu) ~1/3 ->Comes automatically (but softer leptons)
- Hadronic ~2/3
 - ~1/3 "Single prong" Isolated track with or w/o π^0
 - ~1/3 "Three prong" (also) like a pencil jet

• Use "particle flow" reconstruction of jets etc (HPS algorithm) to reconstruct hadronic tau's with ~40% efficiency (pt > 20 GeV)

• But ~1% of jets (which are ubiquitous) still show up as fake tau's. This is a hard business.

• Especially useful for tau-dominated new physics and also when S/B is high (e.g. high MET, ST etc)

Multilepton SM Bkgnds (Leptonic BR's) (Clean but the odds are still pretty bad!)

Process pp → X	σ*B (8 TeV)	Events (20 fb ⁻¹)	"Objects"
W ($\rightarrow \ell = e, \mu, \tau$)	38 nb	750M	one lepton + MET
$Z/\gamma^* (\rightarrow \ell^+ \ell^-)$ (m _{$\ell\ell$} >20GeV)	6 nb (~60% pole)	110M	Two leptons
ttbar (\rightarrow bWbW, W $\rightarrow \ell v$)	24 pb	500K	Two leptons + MET
$WZ(\rightarrow \ell \nu \ell^+ \ell^-)$	1 pb	20K	Three leptons + MET
New physics	10 fb (say)	200	3 leptons+? or 2 leptons + ?? or 1 lepton + ???

From CMS results, internal CMS twiki etc

19 TexasA&M-May14 CMS SUSY-Higgs Sunil Somalwar

Multilepton SM Background estimation

Before results: a small surprising detour from 2011 archives....

 $Z \rightarrow 3\mu$ - Asymmetric Internal (Dalitz) Photon Conversions

Multilepton Results: 3 leptons

number of opposite-sign same flavor (OSSF) dilepton pair presence of τ -had OSSF pair invariant mass is in Z mass window? presence of b tagged jets HT MET (HT>200)

Selection		$E_{\mathrm{T}}^{\mathrm{miss}}$	$N(\tau_h)=$	$0 N_{b-jets} = 0$	$N(\tau_h)$	=1, N _{b-jets} =0	$N(\tau_h)$	=0, $N_{b-jets} \ge 1$	$N(\tau_h)$	=1, $N_{b-jets} \ge 1$
3 Lepton Results			obs	exp	obs	exp	obs	exp	obs	exp
OSSF0 $H_T > 200$	NA	(100,∞)	5	3.7 ± 1.6	35	33 ± 14	1	5.5 ± 2.2	47	61 ± 30
OSSF0 $H_T > 200$	NA	(50,100)	3	3.5 ± 1.4	34	36 ± 16	8	7.7 ± 2.7	82	91 ± 46
OSSF0 $H_T > 200$	NA	(0,50)	4	2.1 ± 0.8	25	25 ± 9.7	1	3.6 ± 1.5	52	59 ± 29
OSSF1 $H_T > 200$	above-Z	(100,∞)	5	3.6 ± 1.2	2	10 ± 4.8	3	4.7 ± 1.6	19	22 ± 11
OSSF1 $H_T > 200$	below-Z	(100,∞)	7	9.7 ± 3.3	18	14 ± 6.4	8	9.1 ± 3.4	21	23 ± 11
OSSF1 $H_T > 200$	on-Z	(100,∞)	39	61 ± 23	17	15 ± 4.9	9	14 ± 4.4	10	12 ± 5.8
OSSF1 $H_T > 200$	above-Z	(50,100)	4	5 ± 1.6	14	11 ± 5.2	6	6.8 ± 2.4	32	30 ± 15
OSSF1 $H_T > 200$	below-Z	(50,100)	10	11 ± 3.8	24	19 ± 6.4	10	9.9 ± 3.7	25	32 ± 16
OSSF1 $H_T > 200$	on-Z	(50,100)	78	80 ± 32	70	50 ± 11	22	22 ± 6.3	36	24 ± 9.8
OSSF1 $H_T > 200$	above-Z	(0,50)	3	7.3 ± 2	41	33 ± 8.7	4	5.3 ± 1.5	15	23 ± 11
OSSF1 $H_T > 200$	below-Z	(0,50)	26	25 ± 6.8	110	86 ± 23	5	10 ± 2.5	24	26 ± 11
OSSF1 $H_T > 200$	on-Z	(0,50)	*135	127 ± 41	542	543 ± 159	31	32 ± 6.5	86	75 ± 19

TexasA&M-May14

CMS SUSY-Higgs

Sunil Somalwar

Multilepton Results for Three Leptons

CMS_SUS-13-002__

Selection		$E_{\rm T}^{\rm miss}$	$N(\tau_h)=$	=0, N _{b-jets} =0	$N(\tau_h)$	=1, $N_{b-jets}=0$	$N(\tau_h)=$	$0, N_{b-jets} \ge 1$	$N(\tau_h)$	=1, $N_{b-jets} \ge 1$
3 Lepton Results			obs	exp	obs	exp	obs	exp	obs	exp
OSSF0 $H_T < 200$	NA	(100,∞)	7	11 ± 4.9	101	111 ± 54	13	10 ± 5.3	87	119 ± 61
OSSF0 $H_T < 200$	NA	(50, 100)	35	38 ± 15	406	402 ± 152	29	26 ± 13	269	298 ± 151
OSSF0 $H_T < 200$	NA	(0,50)	53	51 ± 11	910	1035 ± 255	29	23 ± 10	237	240 ± 113
$OSSF1 H_T < 200$	above-Z	(100,∞)	18	13 ± 3.5	25	38 ± 18	10	6.5 ± 2.9	24	35 ± 18
$OSSF1 H_T < 200$	below-Z	(100,∞)	21	24 ± 9	41	50 ± 25	14	20 ± 10	42	54 ± 28
$OSSF1 H_T < 200$	on-Z	(100,∞)l	150	152 ± 26	39	48 ± 13	15	14 ± 4.8	19	23 ± 11
OSSF1 $H_T < 200$	above-Z	(50, 100)	50	46 ± 9.7	169	139 ± 48	20	18 ± 8	85	93 ± 47
OSSF1 $H_T < 200$	below-Z	(50, 100)	142	125 ± 27	353	355 ± 92	48	48 ± 23	140	133 ± 68
OSSF1 $H_T < 200$	on-Z	(50, 100)	*773	777 ± 116	1276	1154 ± 306	56	47 ± 13	81	75 ± 32
$OSSF1 H_T < 200$	above-Z	(0,50)	178	196 ± 35	1676	1882 ± 540	17	18 ± 6.7	115	94 ± 42
$OSSF1 H_T < 200$	below-Z	(0,50)	510	547 ± 87	9939	8980 ± 2660	34	42 ± 11	226	228 ± 63
OSSF1 $H_T < 200$	on-Z	(0,50)	*3869	4105 ± 666	*50188	50162 ± 14984	*148	156 ± 24	906	925 ± 263

HT < 200

24 TexasA&M-May14 CMS SUSY-Higgs

Multilepton Results for Four Leptons

---CMS-SUS-13-002--

HT < 200

Selection	$E_{\rm T}^{\rm miss}$		$N(\tau_h)=0, N_{b-jets}=0$		$N(\tau_h)=1, N_{b-jets}=0$		$N(\tau_h)$	=0, $N_{b-jets} \ge 1$	N(τ_h)=1, N _{b-jets} ≥ 1	
4 Lepton Results			obs	exp	obs	exp	obs	exp	obs	exp
OSSF0 $H_T < 200$	NA	(100,∞)	0	0.11 ± 0.08	0	0.17 ± 0.1	0	0.03 ± 0.04	0	0.04 ± 0.04
OSSF0 $H_T < 200$	NA	(50, 100)	0	0.01 ± 0.03	2	0.7 ± 0.33	0	0 ± 0.02	0	0.28 ± 0.16
OSSF0 $H_T < 200$	NA	(0,50)	0	0.01 ± 0.02	1	0.7 ± 0.3	0	0.001 ± 0.02	0	0.13 ± 0.08
OSSF1 $H_T < 200$	off-Z	(100,∞)	0	0.06 ± 0.04	3	0.6 ± 0.24	0	0.02 ± 0.04	0	0.32 ± 0.2
OSSF1 $H_T < 200$	on-Z	(100,∞)	1	0.5 ± 0.18	2	2.5 ± 0.5	1	0.38 ± 0.2	0	0.21 ± 0.1
OSSF1 $H_T < 200$	off-Z	(50, 100)	0	0.18 ± 0.06	4	2.1 ± 0.5	0	0.16 ± 0.08	1	0.45 ± 0.24
OSSF1 $H_T < 200$	on-Z	(50, 100)	2	1.2 ± 0.34	9	9.6 ± 1.6	2	0.42 ± 0.23	0	0.5 ± 0.16
OSSF1 $H_T < 200$	off-Z	(0,50)	2	0.46 ± 0.18	15	7.5 ± 2	0	0.09 ± 0.06	0	0.7 ± 0.31
OSSF1 $H_T < 200$	on-Z	(0,50)	4	3 ± 0.8	41	40 ± 10	1	0.31 ± 0.15	2	1.5 ± 0.47
OSSF2 $H_T < 200$	off-Z	(100,∞)	0	0.04 ± 0.03	-	-	0	0.05 ± 0.04	-	-
OSSF2 $H_T < 200$	on-Z	(100,∞)	0	0.34 ± 0.15	-	-	0	0.46 ± 0.25	-	-
OSSF2 $H_T < 200$	off-Z	(50, 100)	2	0.18 ± 0.13	-	-	0	0.02 ± 0.03	-	-
OSSF2 $H_T < 200$	on-Z	(50, 100)	4	3.9 ± 2.5	-	-	0	0.5 ± 0.21	-	-
OSSF2 $H_T < 200$	off-Z	(0,50)	7	8.9 ± 2.4	-	-	1	0.23 ± 0.09	-	-
OSSF2 $H_T < 200$	on-Z	(0,50)	*156	159 ± 34	-	-	4	2.9 ± 0.8	-	-

Multilepton Results for Four Leptons

--CMS-SUS-1-3-002--

HT > 20)()
---------	-----

Selection	$E_{\rm T}^{\rm miss}$		N(τ_h)=0, N _{b-jets} =0		N(τ_h)=1, N _{b-jets} =0		$N(\tau_h)$	=0, $N_{b-jets} \ge 1$	$N(\tau_h)=1, N_{b-jets}\geq 1$	
4 Lepton Results		-	obs	exp	obs	exp	obs	exp	obs	exp
OSSF0 $H_T > 200$	NA	(100,∞)	0	0.01 ± 0.03	0	0.01 ± 0.06	0	0.02 ± 0.04	0	0.11 ± 0.08
OSSF0 $H_T > 200$	NA	(50, 100)	0	0 ± 0.02	0	0.01 ± 0.06	0	0 ± 0.03	0	0.12 ± 0.07
OSSF0 $H_T > 200$	NA	(0,50)	0	$1e-05 \pm 0.02$	0	0.07 ± 0.1	0	0 ± 0.02	0	0.02 ± 0.02
$OSSF1 H_T > 200$	off-Z	(100,∞)	0	0.005 ± 0.02	1	0.25 ± 0.11	0	0.13 ± 0.08	0	0.12 ± 0.12
$OSSF1 H_T > 200$	on-Z	(100,∞)	1	0.1 ± 0.06	0	0.5 ± 0.27	0	0.42 ± 0.22	0	0.42 ± 0.19
$OSSF1 H_T > 200$	off-Z	(50, 100)	0	0.07 ± 0.06	1	0.29 ± 0.13	0	0.04 ± 0.04	0	0.23 ± 0.13
$OSSF1 H_T > 200$	on-Z	(50, 100)	0	0.23 ± 0.11	1	0.7 ± 0.31	0	0.23 ± 0.13	1	0.34 ± 0.16
$OSSF1 H_T > 200$	off-Z	(0,50)	0	0.02 ± 0.03	0	0.27 ± 0.12	0	0.03 ± 0.04	0	0.31 ± 0.15
$OSSF1 H_T > 200$	on-Z	(0,50)	0	0.2 ± 0.08	0	1.3 ± 0.47	0	0.06 ± 0.04	1	0.49 ± 0.19
OSSF2 $H_T > 200$	off-Z	(100,∞)	0	0.01 ± 0.02	-	-	0	0.01 ± 0.06	-	-
OSSF2 $H_T > 200$	on-Z	(100,∞)	1	0.15 ± 0.16	-	-	0	0.34 ± 0.18	-	-
OSSF2 $H_T > 200$	off-Z	(50, 100)	0	0.03 ± 0.02	-	-	0	0.13 ± 0.09	-	-
$OSSF2 H_T > 200$	on-Z	(50,100)	0	0.8 ± 0.4	-	-	0	0.36 ± 0.19	-	-
OSSF2 $H_T > 200$	off-Z	(0,50)	1	0.27 ± 0.13	-	-	0	0.08 ± 0.05	-	-
$OSSF2 H_T > 200$	on-Z	(0,50)	5	7.4 ± 3.5	-	-	2	0.8 ± 0.4	-	-

More Background Breakdown examples (b-tag)

What to do with these huge multilepton tables? CMS SUS-13-002

- Tables ARE the principle results. Several pheno papers for specific models using these detailed binned results for specific models.
- Several CMS results (not all mentioned in this talk):
 - Generate the signal in detail (typically 2-d masses etc)
 - Throw the signal at the tables and calculate exclusions/deviations.
 - Include all channels that contribute to 90% signal acceptance (90% not important – S/B low at that point)
 - Contributing channels vary as the signal parameters are scanned. e.g. going from Z to H in the final state, on-Z channels get replaced by off-Z channels (H→WW, say)
 - A lot of channels fluctuations can be picked up by specific signals. ("lucky" or "unlucky" depending on viewpoint.)(An example later)

Natural Higgsino-NLSP

& direct ewk production

350 GeV Chargino

31

150 GeV Chargino

100% Higgs (=no Z) assumed: hardest to detectHigh stop masses: only ewk productionRight: Higher chargino mass → much lower ewk production

Natural Higgsino NLSP scenario Gauge Mediated Supersymmetry Breaking (GMSB) model

CMS-SUS-13-002

150 GeV Chargino

350 GeV Chargino

Variable higgs BR (100% higgs is the hardest).

Strong vs weak production

e.g. Left: 700 GeV stop: All weak, 100% higgs not excluded

~350 GeV stop: strong+weak, 100% higgs excluded.

Right: chargino too heavy, ewk small, do what you can with strong production

TexasA&M-May14 ----CMS SUSY-Sunil Somalwar Higgs

CMS-SUS-13-002

Now all Z (no Higgs), different chargino masses Better exclusion

TexasA&M-May14 CMS SUSY-Higgs Sunil Somalwar

CMS-SUS-13-002

One side to Higgs, other to Z (unphysical), different chargino masses

Natural Higgsino NLSP (GMSB, strong vs weak)

CMS-SUS-13-002

Top squark production with decays to neutral di-boson pair

Finally: Put H and Z BR's together properly

TexasA&M-May14 CMS SUSY-Higgs

Sunil Somalwar

CMS-SUS-13-014 (PRL)

Natural Higgsino with Diphotons(+b-jets)

Same model, now with diphotons. Most powerful for 100% Higgs BR.

Signature:

- ≥2 photons (p_T > 40, 25 GeV)
- \geq 2 *b*-tags (p_T > 30 GeV)

Backgrounds:

- QCD: $\gamma\gamma$ bbbar+ γ bbbar +jet (with γ -fakes • from jets)
- Small bkg from electrons (faking a photon)

CMS PAS-SUS-13-014

Natural SUSY GMSB (diphotons)

- Strategy:
 - Require 1 Higgs to decay to γγ
 - Higgs →γγ allows us to use Higgs mass sidebands for data-driven background estimate
 - Take MET shape from sidebands
- 3 search regions (M_{γγ} 118-133 GeV):
 - bb pair in the Higgs mass window of 95 to 155 GeV
 - Not consistent with Higgs mass
 - ≥ 3 btags
- Combine 3 signal regions

CMS PAS-SUS-13-014

Natural SUSY (with diphotons)

	2 b-je	ts on <i>h</i> mass	ss 2 b-jets off <i>h</i> mass		3+ b-jet		Total	
$E_{\rm T}^{\rm miss}$ (GeV)	Data	Bkg	Data	Bkg	Data	Bkg	Data	Bkg
0-20	3	5.0 ± 1.3	15	11.0 ± 1.8	2	1.77 ± 0.73	20	18.1 ± 2.3
20-30	2	3.4 ± 1.3	4	7.9 ± 1.7	1	1.8 ± 1.1	7	13.1 ± 2.0
30-40	0	1.39 ± 0.71	5	6.3 ± 1.3	1	0.73 ± 0.84	6	8.7 ± 2.0
40-60	1	0.58 ± 0.68	7	2.2 ± 1.7	2	0.73 ± 0.84	10	3.8 ± 1.6
60+	1	0.19 ± 0.28	2	1.35 ± 0.73	0	1.3 ± 1.0	3	2.8 ± 1.0

- higgsino vs stop mass exclusion
- Exclude stop mass below ~ 360 to 410 GeV, depending on the higgsino mass.

Next

→ Pure Electroweak production.

No strong production, hence electroweak searches are a hard business

First pure Electroweak without higgs in the final state (quickly)

Electroweak Production

- Squarks and gluinos getting heavier in simple scenarios
- What if weak production beats strong production?

 \rightarrow Electroweak production to the rescue?

- Less copious, so lesser reach in mass
- Less hadronic activity

cf: classic trilepton SUSYsignature from Tevatron Run II.
mSUGRA limits were mostly due to EWK production.
(CDF: We got grief for cutting on jets → LHC: bin, don't cut.)

Searches for Production of EWKinos

42

 $\tilde{\chi}_1^0$

 $\tilde{\chi}_1^0$

EWKino results (CMS-SUS-13-006) Multileptons, on-Z and off-Z and SS dileptons

EWKino Summary (no Higgs)

Next

 \rightarrow Pure Electroweak production with higgs in the final state.

 \rightarrow No strong production and higgs is difficult to detect.

Electroweak with higgs in the final state is the most difficult of such searches. Not just a fetish. Higgs is the best EWSB exploration tool we have.

➔ Multi-binned and multi-signature approach essential.

EWKino with Higgs

Higgsino-Bino:

EWKinos with Higgs in the final state

Probing neutralino/chargino masses up to ~ 204 GeV

TexasA&M-May14

CMS-PAS-SUS-13-006 CMS-PAS-SUS-13-017

EWKino Summary (including WH)

Next: and independently....

→All hadronic ElectroHiggs

CMS hh \rightarrow 4b

	4/5 jets, top jets	s > 50GeV			
	Veto: leptons, tracks, hadronic tau				
	MET significance and jet-met angle				
	Signal: 4b, 3b in MET significance bins				
Bkgnd: 2b, 3b sideband, 4b sideband					
53	TexasA&M-May14	CMS SUSY-Higgs	Sunil Somalwar		

CMS subsection of the second state of the sec

Final word at 8 TeV

Showed ElectroHiggs so far with:

```
1,2,3,4 leptons: on-Z, off-Z etc etc
Diphotons + X
3b/4b
```

```
Grand ElectroHiggs omnibus combination
Topologies: hh, hZ and ZZ and admixture
& hW
```

Next: Not necessarily SUSY

SUSY or non-SUSY BSM searches with Higgs in the final state (multileptons and diphotons)

Heavy Higgs - Extended Higgs Sector(2HDM)

- Heavy Higgs $H \rightarrow hh$) and
- pseudo scalar Higgs $A \rightarrow Zh$

 Signature: multileptons and diphoton+leptons

Nathaniel Craig et. al hepph:arXiv:1210.0559 & 1305.2424 CMS-HIG-13-025

$H \rightarrow hh$ and $A \rightarrow Zh$ Model Independent Limits

CMS-HIG-13-025

$H \rightarrow hh$ and $A \rightarrow Zh$ in 2HDM

CMS-HIG-13-025

gg-H->hh

gg->A->Zh

60

$t \rightarrow ch FCNC coupling$

Multileptons combined with diphoton+leptons

Higgs Decay Mode	observed	expected	1σ range
$H \rightarrow WW^*$ ($\mathcal{B} = 23.1\%$)	1.58 %	1.57 %	(1.02–2.22) %
$H \rightarrow \tau \tau$ ($\mathcal{B} = 6.15\%$)	7.01 %	4.99 %	(3.53–7.74)%
$H \rightarrow ZZ^*$ ($\mathcal{B} = 2.89\%$)	5.31 %	4.11%	(2.85–6.45)%
combined multileptons (WW [*] , $\tau\tau$, ZZ [*])	1.28 %	1.17 %	(0.85–1.73)%
$H \rightarrow \gamma \gamma$ ($\mathcal{B} = 0.23 \%$)	0.69 %	0.81 %	(0.60–1.17)%
combined multileptons + diphotons	0.56 %	0.65 %	(0.46–0.94)%

$$\sqrt{|\lambda_{\mathrm{tc}}^{\mathrm{H}}|^2 + |\lambda_{\mathrm{ct}}^{\mathrm{H}}|^2} < 0.14$$

Next

→ SUSY is dead. Long live SUSY!

SUSY Search Criteria (are very loose)

- Prompt vs non-prompt (lifetime=?)
- R-Parity conserved? RPV? (nonprompt?)
- Infinite mass spectra variations
- Production: Strong or Weak?
- Strong: Squark, gluinos, 3rd Generation (stop/sbottom), Cascades to higgs final states
- Electroweak: Sleptons, gauginos, natural higgs, "ElectroHiggs"
- →We clearly have not fully spanned the very interesting electroHiggs sector..... AND....
- → Have we really seen nothing so far? (What follows comes with a strong disclaimer!!)

Stau (N)NLSP with multileptons

Origin & significance of discrepancy CMS-SUS-13-002

Most significant contributing channel: 4 leptons, OSSF1, off-Z, including 1 τ , no b-tags, HT< 200 GeV Observe = 22 events Expected = 10 \pm 2.4

Discrepancy studies

CMS-SUS-13-002

Category:

4 leptons, including 1τ ,

OSSF1, off-Z,

no b-tags, HT< 200 GeV

Observe = 22 events

Expected = 10 ± 2.4 events

Same plot, with stau NLSP signal filling the SM void.

There are 64 different categories of met-binned multi-lepton events. BUT: One of the first to-do for 2015

SUSY searches with higgs conclusions

- Masses heavy in simple (hadronic) schemes, but many foxholes left. The hunt continues.
- The obvious hierarchy is squark/gluino, 3rd generation, electroweak and electrohiggs. (RPV etc separate). Higgs is our best EWSB probe.
- A new energy regime in 2015. Let us hope for a quick hadronic find. If not, back to the electroweak and electrohiggs chase.
- 2015 should see significant advances with electroHiggs.
- A word to the experimentalist: If a search team discovers an excess, it will NOT be the physics model they were looking for → open (inclusive) searches important.
- SUSY is a sly cat with nine lives.
 →Rumors of SUSY's demise are greatly exaggerated.

Thanks/Credits

- Mitchell workshop organizers
- LHC staff.
- CMS collaborators, conveners and management.

Interpretations: GMSB scenarios

GMSB = Gauge Mediated Supersymmetry Breaking

CMS-SUS-13-002

Mass spectra in 3 models

Gravitino is the lightest SUSY particle (LSP).

GMSB = Gauge Mediated Supersymmetry Breaking

Mass spectra in 3 models

Gravitino is the lightest SUSY particle (LSP).

Strong vs Weak Super-Partner Production

