Other BSM (non-SUSY) searches in ATLAS

Mansoora Shamim University of Oregon For the ATLAS collaboration

Mitchell-2014 Texas A&M University May 12-15

ATLAS Exotics Searches* - 95% CL Exclusion Status: April 2014

Status: April 2014 $\int \mathcal{L} dt = (1.0 - 20.3) \text{fb}^{-1} \sqrt{s} = 7$						\sqrt{s} = 7, 8 TeV		
	Model	<i>l</i> ,γ	Jets	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	⁻¹] Mass limit		Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\ell \ell / \gamma \gamma$ ADD QBH $\rightarrow \ell q$ ADD BH high N_{trk} ADD BH high Σp_T RS1 $G_{KK} \rightarrow \ell \ell$ RS1 $G_{KK} \rightarrow ZZ \rightarrow \ell \ell q q / \ell \ell \ell \ell$ RS1 $G_{KK} \rightarrow WW \rightarrow \ell \nu \ell \nu$ Bulk RS $G_{KK} \rightarrow HH \rightarrow b \overline{b} b \overline{b}$ Bulk RS $g_{KK} \rightarrow t \overline{t}$ S^1/Z_2 ED UED	$- 2\gamma \text{ or } 2e, \mu$ $1 e, \mu$ $2 \mu (SS)$ $\geq 1 e, \mu$ $2 e, \mu$ $2 \text{ or } 4 e, \mu$ $2 e, \mu$ $- 1 e, \mu \approx$ $2 e, \mu$ 2γ	1-2 j - 1 j - 2 j or - 4 b ≥ 1 b, ≥ 1J/2 - -	Yes - - - Yes 2) Yes - Yes	4.7 4.7 20.3 20.3 20.3 1.0 4.7 19.5 14.3 5.0 4.8	Mp 4.37 TeV Ms 4.18 TeV Mth 5.2 TeV Mth 5.7 TeV Mth 6.2 TeV GKK mass 2.47 TeV GKK mass 845 GeV GKK mass 590-710 GeV SKK mass 0.5-2.0 TeV MKK ≈ R ⁻¹ 4.71 TeV Compact. scale R ⁻¹ 1.4	n = 2 n = 3 HLZ NLO n = 6 $n = 6, M_D = 1.5 \text{ TeV, non-rot BH}$ $n = 6, M_D = 1.5 \text{ TeV, non-rot BH}$ $k/\overline{M}_{Pl} = 0.1$ $k/\overline{M}_{Pl} = 0.1$ $k/\overline{M}_{Pl} = 0.1$ BR = 0.925	1210.4491 1211.1150 1311.2006 1308.4075 ATLAS-CONF-2014-016 ATLAS-CONF-2013-017 1203.0718 1208.2880 ATLAS-CONF-2014-005 ATLAS-CONF-2013-052 1209.2535 ATLAS-CONF-2012-072
Gauge bosons	$\begin{split} & \text{SSM } Z' \to \ell\ell \\ & \text{SSM } Z' \to \tau\tau \\ & \text{SSM } W' \to \ell\nu \\ & \text{EGM } W' \to WZ \to \ell\nu \ell'\ell' \\ & \text{LRSM } W'_R \to t\overline{b} \end{split}$	2 e,μ 2 τ 1 e,μ 3 e,μ 1 e,μ	_ _ _ 2 b, 0-1 j	– Yes Yes Yes	20.3 19.5 20.3 20.3 14.3	Z' mass 2.86 TeV Z' mass 1.9 TeV W' mass 3.28 TeV W' mass 1.52 TeV W' mass 1.84 TeV		ATLAS-CONF-2013-017 ATLAS-CONF-2013-066 ATLAS-CONF-2014-017 ATLAS-CONF-2014-015 ATLAS-CONF-2013-050
CI	Cl qqqq Cl qqll Cl uutt	_ 2 e,μ 2 e,μ (SS)	2 j _ ≥ 1 b, ≥ 1 j	_ _ Yes	4.8 5.0 14.3	Λ 7.6 TeV Λ 3.3 TeV	$\eta = +1$ 13.9 TeV $\eta_{LL} = -1$ C = 1	1210.1718 1211.1150 ATLAS-CONF-2013-051
DM	EFT D5 operator EFT D9 operator		1-2 j 1 J, ≤ 1 j	Yes Yes	10.5 20.3	M, 731 GeV M, 2.4 TeV	at 90% CL for $m(\chi)$ < 80 GeV at 90% CL for $m(\chi)$ < 100 GeV	ATLAS-CONF-2012-147 1309.4017
ΓØ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e, μ, 1 τ	≥ 2 j ≥ 2 j 1 b, 1 j	- - -	1.0 1.0 4.7	LQ mass 660 GeV LQ mass 685 GeV LQ mass 534 GeV	$egin{array}{lll} eta = 1 \ eta = 1 \ eta = 1 \ eta = 1 \ eta = 1 \end{array}$	1112.4828 1203.3172 1303.0526
Heavy quarks	Vector-like quark $TT \rightarrow Ht + X$ Vector-like quark $TT \rightarrow Wb + X$ Vector-like quark $BB \rightarrow Zb + X$ Vector-like quark $BB \rightarrow Wt + X$	1 e,μ 1 e,μ 2 e,μ 2 e,μ(SS)	$ \begin{tabular}{l} \geq 2 & b, \geq 4 & j \\ \geq 1 & b, \geq 3 & j \\ & \geq 2 & b \\ \geq 1 & b, \geq 1 & j \end{tabular} \end{tabular} $	Yes Yes - Yes	14.3 14.3 14.3 14.3	T mass790 GeVT mass670 GeVB mass725 GeVB mass720 GeV	T in (T,B) doublet isospin singlet B in (B,Y) doublet B in (T,B) doublet	ATLAS-CONF-2013-018 ATLAS-CONF-2013-060 ATLAS-CONF-2013-056 ATLAS-CONF-2013-051
Excited fermions	Excited quark $q^* \rightarrow q\gamma$ Excited quark $q^* \rightarrow qg$ Excited quark $b^* \rightarrow Wt$ Excited lepton $\ell^* \rightarrow \ell\gamma$	1 γ - 1 or 2 e, μ 2 e, μ, 1 γ	1 j 2 j 1 b, 2 j or 1 –	– – j Yes –	20.3 13.0 4.7 13.0	q* mass 3.5 TeV q* mass 3.84 TeV b* mass 870 GeV t* mass 2.2 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ left-handed coupling $\Lambda = 2.2$ TeV	1309.3230 ATLAS-CONF-2012-148 1301.1583 1308.1364
Other	LRSM Majorana v Type III Seesaw Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$ Multi-charged particles Magnetic monopoles	$2 e, \mu$ $2 e, \mu$ $2 e, \mu (SS)$ $-$ $-$ $-$	2 j - - - 7 TeV	- - - - -	2.1 5.8 4.7 4.4 2.0 3 TeV	Nº mass 1.5 TeV N# mass 245 GeV H## mass 409 GeV multi-charged particle mass 490 GeV monopole mass 862 GeV 10 ⁻¹ 1	$m(W_R) = 2 \text{ TeV, no mixing}$ $ V_e =0.055, V_{\mu} =0.063, V_r =0$ DY production, BR($H^{\pm\pm} \rightarrow \ell\ell$)=1 DY production, $ q = 4e$ DY production, $ g = 1g_D$	1203.5420 ATLAS-CONF-2013-019 1210.5070 1301.5272 1207.6411
							'' Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown.

ATLAS Preliminary

Results with complete 8 TeV dataset

- New spin 1 resonances
- Extra dimensions
 - Randall-Sundrum (RS)
 - Arkani-Hamed, Dimopoulos, Divali (ADD)
 - classical and quantum black holes
- Dark matter
- New phenomenon in events with three charged leptons

ATLAS Detector

- A general purpose detector
- Trackers
 - Pixel
 - Silicon microstrip tracker (SCT)
 - Transition radiation tracker (TRT)
- Solenoid
 - 2T magnetic field
- Calorimeter
 - Electromagnetic (EM)
 - Liquid Argon (LAr)
 - Hadronic (HAD)
 - scintillating tiles in central barrel, LAr in end caps (EC)
- Muon Spectrometer
 - excellent momentum resolution
 - $^{\circ}$ $% _{\rm T}$ independent momentum measurement at high ${\rm p}_{\rm T}$
- Three large superconducting toroids
 - one barrel and two ECs
 - eight-fold azimuthal symmetry around calorimeter
 - 1.2T magnetic field

$\eta \equiv -\ln \tan(\theta/2)$ point	ar angle $ heta$ is the a	ngle from the beam axis
---	---------------------------	-------------------------

Detector component	η coverage			
	Measurement	Trigger		
Tracking	±2.5			
EM calorimetry	±3.2	±2.5		
Hadronic calorimetry (jets)				
barrel and end-cap	±3.2	±3.2		
forward	$3.1 < \eta < 4.9$	$3.1 < \eta < 4.9$		
Muon spectrometer	±2.7	±2.4		

The ATLAS Collaboration, G. Aad et al., The ATLAS Experiment at the CERN Large Hadron Collider, JINST 3 (2008) S08003.

Heavy Resonances

- Predicted by various extensions of Standard Model (SM)
 - Sequential Standard Model (SSM)
 - same coupling of Z'_{SSM} (W'_{SSM}) to fermions as Z_{SM} (W_{SM})
 - GUT-inspired theories
 - $Z'_{\psi}\,$ and $Z'_{\chi}\,$ lightest mass resonances predicted by $E_{6}^{}\,$ based theories
 - Weak-doublet spin-1 bosons
 - anomalously interacting Z* and W* bosons
 - Diboson resonance predicted by Extended Gauge Model (EGM)
 - Excited quarks (q*) predicted by composite models

17 Examples of dialoctron signal templates at reconstruction level for $\frac{7}{2}$

Ζ`->ττ

- Analysis complements the search in dielectron and dimuon channels
- Both tau leptons assumed to decay hadronically
 - Both 1 and 3-prong decays included
 - Multivariate algorithms (BDT) used for tau identification (60% efficiency)
- Drell Yan (Z->ττ/γ*) dominant background at high mass: estimated from MC

ATLAS-CONF-2014-017

W'(W*)-> e/μ v $m_{\rm T} = \sqrt{2p_{\rm T} E_{\rm T}^{\rm miss} (1 - \cos \varphi_{\ell \nu})}$ Events ATLAS Preliminary W'→ ev Events Data 2012 ATLAS Preliminary $W' \rightarrow \mu \nu$ Data 20¹ 107 10⁵ W'(500) ∖s = 8 TeV $\sqrt{s} = 8 \text{ TeV}$ W'(1000) W'(1000) 10 $\int L dt = 20.3 \text{ fb}^{-1}$ W'(3000) Isolated lepton and 10 W'(3000) L dt = 20.3 fb⁻¹ 10^{3} Top quark 10 missing transverse Top quark Diboson 10² Diboson 10⁵ Multiiet energy (MET) 10^{2} **Electron channel** 10 10 Data/Bkg Data/Bkg - p_T^e and MET > 125 GeV 0.5 10^{3} Muon channel 10^{2} 10^{3} m_T [GeV] m_T [GeV] p_{T}^{μ} and MET > 45 GeV B [fb] B [fb] ATLAS LO theory ATLAS ••• NNLO theory 10³ 10³ Preliminary Preliminary Observed limit ь Observed limit ···· Expected limit Expected limit EW background 10^{2} 10^{2} Expected $\pm 1\sigma$ Expected ± 1o Expected $\pm 2\sigma$ Expected $\pm 2\sigma$ ١A estimated from MC W 10 10 $m_{k} > 0.4 m_{W}$ $m_{k} > 0.4 m_{W}$ Data driven estimate of $10^{-1} \models W^* \rightarrow |_V$ 10^{-1} $W' \rightarrow Iv$ multijet background √s = 8 TeV, ∫ Ldt = 20.3 fb⁻¹ $\sqrt{s} = 8 \text{ TeV}, \int \text{Ldt} = 20.3 \text{ fb}^{-1}$ _____ 500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000 m_{w*} [GeV] m_w, [GeV] $m_{W'}$ [TeV] m_{W^*} [TeV] decay Exp. Obs. Exp. Obs. 95% credibility level upper limit on σB 3.15 3.15 3.04 3.04 ev

in fiducial region $m_{lv} > 0.4 m_{W'/W^*}$

2.80

2.98

3.19

 $\mu\nu$

both

2.98

3.27

2.80

3.08

W'-> WZ -> 3l+u

- Extended Gauge Model W'
 - same coupling to fermion as SM W
 - suppressed coupling to WZ by $(m_W/m_{W'})^2$
- Exactly three leptons
- Two signal regions defined to improve sensitivity
 - $m_{W^{\circ}} > 250 \text{ GeV}, \Delta \phi(\text{lepton}, \text{MET}) < 1.5$
 - $m_{W^{\circ}} < 250 \text{ GeV}, \Delta \phi (\text{lepton}, \text{MET}) > 1.5$

	Excluded EGM W' mass (TeV)				
	evee	μνее	ενμμ	μνμμ	combined
Expected	1.21	1.16	1.17	1.16	1.49
Observed	1.20	1.19	1.06	1.17	1.52

9

excited quark masses

below 3.5 TeV excluded

q*-> qγ

- Searching for excited quark with mass m_{q*}
- p_T > 125 GeV for photon and jet
- p_T dependent isolation criteria to preserve efficiency - $E_t^{isol} < 0.011 p_T^{\gamma} + 3.65$ GeV
- m_{vi} spectrum fitted dijet function

$$f(x \equiv m_{\gamma j}/\sqrt{s}) = p_1(1-x)^{p_2} x^{-(p_3+p_4 \ln x)}$$

Extra dimensions (ED)

- A solution to hierarchy problem: M_{Pl} (10¹⁹ GeV) > M_{EW} (10² GeV)
- More than 3+1 dimensions
- Gravity originated on Planck brane can propagate in bulk
- SM fields confined to 3+1 dimensions
- Randall-Sundrum (RS) and Arkani-Hamed, Dimopoulos, Divali (ADD)
- Spin 2 resonance, G*
 - Dilepton (ee,μμ)
 - DiHiggs (4b)
- Quantum black holes (QBH)
 - Dilepton (ee,μμ)
 - Lepton (e,μ)+jet
 - Photon+jet
- Classical black holes (CBH)
 - Multi-object (e,μ + jets)
 - Like sign dimuon

G*-> ee, μμ

0.5

- Lightest excitation of Graviton, G*
- Narrow resonances in dilepton and diphoton
- Branching ratio to 2 leptons small but large signal to background ratio

κ: scale that defines warp factor of extra dimensions

$$\overline{M}_{\rm Pl} = M_{\rm Pl}/\sqrt{8\pi}$$

$k/\overline{M}_{ m Pl}$	0.01	0.03	0.05	0.1	0.2
Observed limit on M_{G^*} [TeV]	1.25	1.96	2.28	2.68	3.05
Expected limit on M_{G^*} [TeV]	1.28	1.95	2.25	2.67	3.05

G*->HH->4b

- Bulk RS model
- Decay to heavy objects preferred
- Branching fraction of G* to HH is 7%
- Width of G* resonance smaller than resolution of m_{4j} (~15%)
- At least 4 b-tagged jets with $p_T > 40 \text{ GeV}$

ADD ED: QBH-> e/μ + jet

Phys. Rev. Lett 112, 091804 (2014)

- N >= 1 extra dim.
- Plank scale M_D
 ~ 1 TeV
- Fractionally charged QBHs
- Violation of lepton and baryon number conservation
- M_{th} ~ M_D
- $p_T^{e,\mu,j} > 130 \text{ GeV}$
- Δη(e/μ,jet) < 1.5

First limits on QBH decaying to lepton+jet M_{Th} < 5.3 TeV excluded

 Backgrounds normalized to data in low invariant-mass control region and extrapolated through fits to high invariant-mass region

ADD ED:QBH-> γ + jet

- Another interpretation of q*->qy search
- Model paramaeters assumed to be the same as for lepton +jet search
- First limits on QBH decaying to γ+jet

QBH masses below 4.6 TeV excluded

ADD ED: Classical Black Holes-> e/u + iets

ADD ED: Classical Black Holes-> μμ (same sign)

Phys. Rev. D 88 (2013) 072001

- Fundamental Planck scale M_D ~ 1 TeV
- Like sign dimuon final state from decay of black holes
- Low standard model background
- Signal region characterized by high track multiplicity

date masses and for spin-dependent interactions)

I: production of DM particles recoiling against X (X=q,W/Z,y) Dark matter (DM)

- Production of dark matter particles recoiling against X (X=g,W/Z,γ)
- Hadronic decays mono W/Z
- Leptonic decays of mono W/Z

Name Operator		Coefficient
D1	$ar{\chi}\chiar{q}q$	m_q/M_*^3
D2	$ar{\chi}\gamma^5\chiar{q}q$	im_q/M_*^3
D3	$ar{\chi}\chiar{q}\gamma^5 q$	im_q/M_*^3
D4	$ar{\chi}\gamma^5\chiar{q}\gamma^5q$	m_q/M_*^3
D5	$ar{\chi}\gamma^\mu\chiar{q}\gamma_\mu q$	$1/M_{*}^{2}$
D6	$ar{\chi}\gamma^{\mu}\gamma^{5}\chiar{q}\gamma_{\mu}q$	$1/M_{*}^{2}$
D7	$ar{\chi}\gamma^\mu\chiar{q}\gamma_\mu\gamma^5 q$	$1/M_*^2$
D8	$ar{\chi}\gamma^{\mu}\gamma^5\chiar{q}\gamma_{\mu}\gamma^5q$	$1/M_*^2$
D9	$ar{\chi}\sigma^{\mu u}\chiar{q}\sigma_{\mu u}q$	$1/M_*^2$
D10	$ar{\chi}\sigma_{\mu u}\gamma^5\chiar{q}\sigma_{lphaeta}q$	i/M_*^2
D11	$ar{\chi}\chi G_{\mu u}G^{\mu u}$	$lpha_s/4M_*^3$
D12	$ar{\chi}\gamma^5\chi G_{\mu u}G^{\mu u}$	$i lpha_s / 4 M_*^3$
D13	$ar{\chi} \chi G_{\mu u} ilde{G}^{\mu u}$	$i lpha_s / 4 M_*^3$
D14	$ar{\chi}\gamma^5\chi G_{\mu u} ilde{G}^{\mu u}$	$\alpha_s/4M_*^3$

DM: Hadronic decays of W/Z

- Interference between radiation from u and d quarks
- C(u)=-C(d)=> constructive interference=>mono-W could be the most sensitive channel
- Large radius jets: R=1.2 to capture both quarks from W and Z decay: Jet p_T > 250 GeV
- Two signal regions with large MET: 350 and 500 GeV

- 90% CL limit on M_{*} for various operators coupling the Weakly Interacting Massive Particles (WIMPs) to SM particles
- Strongest limits on M_{*} for the case of constructive interference
- Spin independent case: 3 orders of magnitude better than monojet at 7 TeV

DM: Leptonic decays of W

- Another interpretation of a lepton+MET resonance search
- First direct ATLAS search for dark matter particles in this channel
- 95% CL lower limits on M_{\ast}

arXiv:1404.0051

DM: Leptonic decays of Z

- Interaction between Z boson and WIMP investigated for the first time at the LHC
- Four signal regions using MET: 150, 250, 350 and 450 GeV
- 95% CL lower limits on M_{*} and upper limits on χ-nucleon scattering cross section
 - complement the limits in other channels

Multileptons SR

Conclusions

- Searches for exotic phenomena carried out in a variety of channels at ATLAS
- No signs of heavy resonances, black holes or dark matter in 8 TeV dataset
- New limits have been set
- Looking forward to high energy and luminosity in 2015