

CMS Status Report

Maria Girone, CERN David Lange, LLNL

Outline

- Progress on software releases
- Resource usage
- Run II preparation and Validation of the changes
 - Data Management
 - Data Access
 - Production and Distributed Analysis tools
- Scheduling Work
 - Input to Computing from Physics
- Outlook

Scheduling Work and Releases

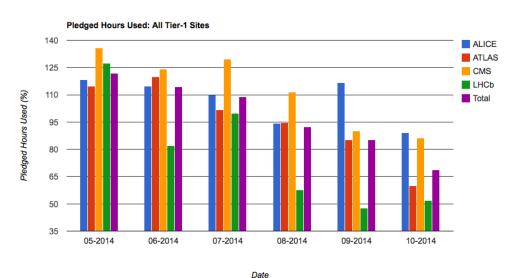
- The CMS software teams had a long program of work for LS1
 - Multi-core transition, speed improvements, and performance improvements for more complex events
- The current schedule is for the initial 2015 release (CMSSW_7_4) for data taking to be released for production workflows at the end of March
 - The development and validation cycle begins in January
- This constrains the time computing has to produce the
 1B events needed for the beginning of the Run
 - There is not a lot of contingency for unforeseen problems

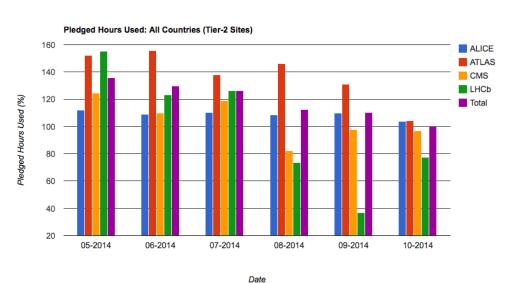
Progress on CMSSW Development Releases

- CMSSW_7_1_0 now validated for MC simulation (generator+detector simulation components)
 - Integration of latest Pythia8 and other generators complete
 - Validation of latest generator versions is on-going including Run I data comparisons
- CMSSW_7_2_0 released in October. Primary goals have been achieved:
 - 1. "PHYS14" exercise reconstruction:
 - Reprocessing of our CSA14 exercise simulation with the latest digitization and reconstruction (~300M events)
 - This release brings us a long ways towards the final reconstruction for 25ns bunch spacing
 - 2. Data taking @Point5: Both the online and Prompt Reconstruction used this release for the recent Magnet test.

MiniAOD: New Data Format for Analysis

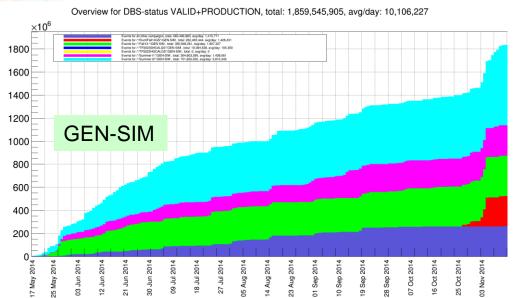
- Goal: Extremely small analysis data format
 (10% our Run 1 AOD) targeting most analysis work
- Added benefit of the miniAOD format: We have the capability to reproduce from AOD including high-level reconstruction improvements
 - Allows us to better cope with our limited ability to reprocess data in 2015 running
- Given experience in CSA14, widespread adoption is likely

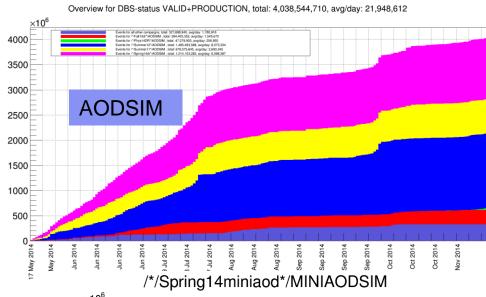

The 13 TeV MC Reco for CSA14 ramped down at the end of August

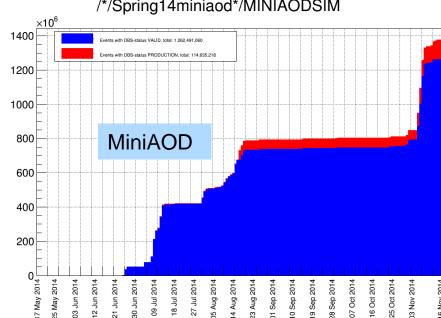

- Processing of MC for Run1 analysis continued together with the preparation of upgrade samples
- Tier-2s have fluctuated around 100%
 - Continued analysis
 - Generator simulation
 - Central mini-AOD production

Production campaigns just starting

- PHYS14: ~300M reconstructed events to target specific "early" analyses from the high priority set exploring the discovery potential with the first fb-1
- 1Billion simulated events at 13 TeV
- TP Upgrade samples
- Our planning for Tier-2s in 2015 is based on the ramping down of Run I analysis
 - There are many analysis ongoing, but there are not new simulation samples expected and the bulk of the computationally intensive part should be finished

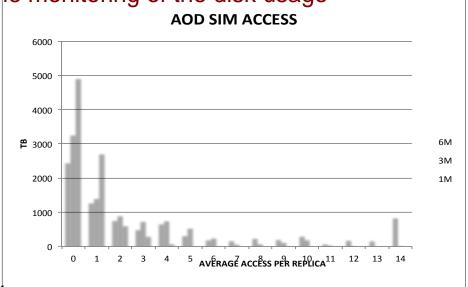

Resource Usage




Summary of Ongoing Production Campaigns

- Simulation and Reconstruction has been steady for all of 2014
 - CSA14 and samples for Run I analysis were the bulk of the events
 - The beginning of the Run II sample preparations can be seen in the simulation plot
- CMS is validating a new format called MiniAOD
 - Fast to produce and has the potential for saving analysis computing that had been used for producing duplicate group ntuples
 - Small to store. Intended to cover the bulk of analysis use cases

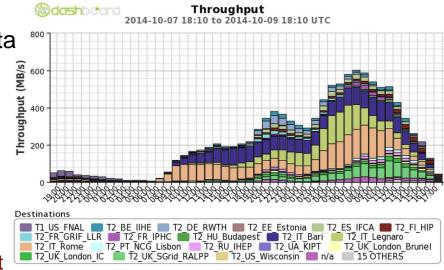
Maria Girone, CERN


Preparing for Run II

- 2014 was intended as a commissioning year in preparation for Run II
- The increase in computing capacity in Run II does not scale linearly with the increase in event rate and complexity expected in 2015.
 - Many optimizations needed to remain in the resource envelope
- Improvements were needed in data management, data access as well as production and analysis tools
 - All were intended to improve the functionality and efficiency of the system
 - Several have been significant development and commissioning efforts
 - We are still working on the validation of several areas, but there has been steady progress over the year and during CSA14
 - We are now completing the work-plan commissioning the production system for Run II

Data Management in Run II

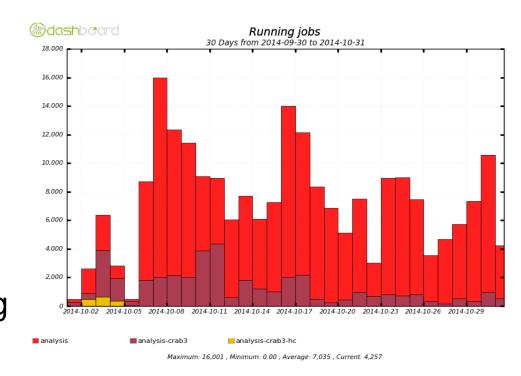
- Dynamic Data Placement
 - Scripts to replicate data that is heavily accessed and to release the cache for under utilized samples are in place and running
 - When attempting to stress individual samples in a data federation test this fall, DDP engaged and replicated the samples
 - We are working to improve and automate the monitoring of the disk usage
 - Even at a 6M window, 27% of the disk space for AODSIM is used by unaccessed samples (10% of the total space)
 - The zero bin includes un-accessed replicas and datasets that have only one copy on disk


- Disk/Tape separation at Tier1s is complete
 - Allows better disk management, decoupled tape and disk functionality, analysis access to Tier1
 - All T1 sites have enabled both endpoints and we are already capable of using the new functionality

Data Federation in Run II

AAA has been a primary focus area in 2014

- We validated small scale use of non-local data access in CSA14
 - Fall-back when CRAB3 jobs don't find input data locally and in "ignore locality" mode
 - Very good feedback by users
- After CSA14 scale tests were performed in Europe and the US
 - 20% of jobs were able to access data over the wide area (60k files/day, O(100TB)/day)
 - Tests showed that the scale could be reached, but that the job success rates were sensitive to the health of all the sites


Hosted xroot project leader for Offline and Computing week

- Proposed the concept of two connected federations one production and a fall back transitional federation, which is an interesting way to involve sites that are less reliable
- Discussing what needs to be done to transition AAA to "regular" operations. Working on how to identify site and access issues

Distributed Analysis

- CRAB3 was validated in CSA14 for specific workflows as planned
 - We have maintained a scale of about 10% since the end of the challenge with regular users
- Work plan to delivery continuous improvements with the goal of having all current functionality by the end of the year and motivating people to switch

- We need to improve the level of adoption and scale of submission
 - Reports from users are positive and system facilitated the production of miniAOD by users at similar speeds to central production
 - Overall level of adoption is smaller than we planned, and we are working to reach 50% by the beginning of 2015

Multi-Core and Tier-0

- Multi-core queues exist on all the Tier-1s and CERN
 - Small scale prompt-reco multi-core jobs work and appear to be efficient
 - Need to ramp up the scale in terms of number of sites and number of machines
- With the increased complexity and trigger rate the largest single luminosity sections can take longer than 48 hours to process using a single core
 - The improved speed of the multi-core application allows us to fit within the batch system limits
- Tier-0 workflows are running for MWGR (Midweek Global Run) including data transfer, repacking, and basic cosmic reconstruction. Scale tests using Run I saved data are scheduled for November and February
 - Lots of functionality, but a lot of validation and scaling work left to do
 - Tier-0 is not as far along in scale and hardening as we had planned at the beginning of the year

Validation of the CERN Resources

- Many changes in the CERN Site services
 - Move to a Openstack based Cloud-like virtualized resources located at CERN and Wigner
- We understand Wigner much better than we did a year ago, but we are still finding and solving issues
 - Prompt-Reco with optimized IO has a small performance hit, consistent with reading storage over the wide area (<5%). This is bulk of the Tier-0 activity
 - Digi-reco and other access to non IO optimized secondary files had a significant hit of a factor 3, but can be mitigated by insuring/increasing the replication of pile-up events in both locations
 - Somewhat unexpectedly merging has an enormous hit reading over the wide area;
 CMS re-activated an old functionality called "lazy download" which copies the input files to local disk in large chunks and the performance has significantly improved

Organized Production Milestone

- The final formal computing milestone is production, which was scheduled for fall
 - We have a target of improving speed of completing and announcing workflows
 - Goal is to have "tails" no longer than 25% of the processing time
 - Starting to work on improving the flexibility of resources used in workflows by enabling wide area reading of the data in production
 - Allow reconstruction of simulation at Tier-2s and sharing workflows across Tier-1s
 - The disk/tape separation was necessary to avoid duplicating tape copies
- Currently the production system performance is constrained by available computing resources, but also by available operator effort
 - We are looking to streamline and automate steps to ensure we are limited only by capacity

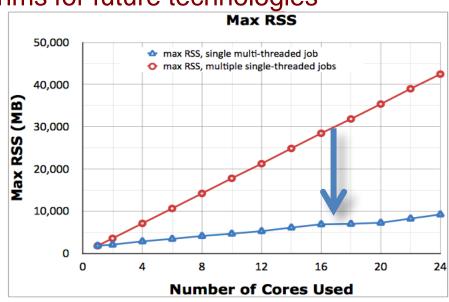
Input to Computing from Physics

- Roughly half the physics groups are expecting continued Run I analysis activity extending beyond Moriond, 2015
 - No new requests for organized processing and bulk user production for Run I should be finished. There will be some need for storage as Run I analyses close out early in Run II
- CMS is pursuing a running strategy similar to Run I
 - ~1B simulation events will be finished at the beginning of the Run with our best guess for conditions
 - Remaining sample launched when real conditions are know
 - Prompt Reconstruction will be launched with the best calibration at the time
 - We are investigating the ability to schedule reprocessing passes during the year as the running conditions change

Use of the HLT farm in 2015

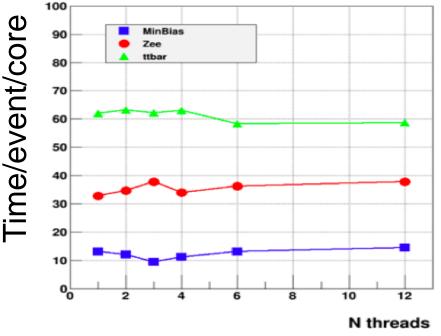
- The HLT farm has been used in production throughout 2014
 - With the upgraded network it is a large and flexible resource
- In 2015, the HLT farm is mostly busy with its primary function
 - Looking at the 2 technical stops as potential periods for reprocessing campaigns with the contribution of the HLT farm
 - Aligns well with the physics goals
 - We are also working on the capability to use the HLT farm during inter-fill periods
 - Is a good source of opportunistic computing, but will be a small absolute increase in resources
 - Requires to run workflows of a few hours

- Start June 1st
- 3 weeks @50ns (Ifb-1)
- 3 weeks TS1 (scrubbing)
- 6 weeks @25ns high beta (4 fb⁻¹)
- 3 weeks TS2/special
- 7 weeks @25ns low beta (10fb-1)



Multithreaded CMSSW applications

- Motivation for multithreaded jobs in Run II:
 - Ensure processing of luminosity sections within single job despite higher trigger rates and increased event complexity
 - Reduce number of GRID jobs to manage
 - Reduce required memory per core
 - Prepare CMSSW framework and algorithms for future technologies
- Reconstruction: Current performance meets goal for Run II
 - Continue to improve performance scaling by making more algorithms safe.
 - Big memory savings: 0.35 GB per additional thread instead of 1.8GB/job



Including multithreaded simulation

The recent Geant4 patch release (4.10p3)
 addresses problems we had reported from our initial testing

 Now we observe good CPU and memory performance in our simulation application (~800MB RSS saved per thread)

Closing out CMSSW for Run II startup

We are close to finalizing CMSSW for Run II. Important open items include

- Finalize the AOD and miniAOD content
 - Getting input from physics groups now
- Reduction of I/O for pileup simulation
- ROOT6 integration
 - Thanks to close work with the ROOT team, we nearly have a CMSSW test release with all unit tests and workflows running
 - Validation against our standard ROOT5 builds to start soon

Milestones in our release schedule

- 1. Freeze detector level reconstruction (~now)
- 2. Freeze tracking configuration in December
- Completing the high-level reconstruction configuration and tuning in February

Outlook

- CMS just had a Offline & Computing week (Nov 2nd -6th)
 - Overall theme of this week was "Being Ready on Day 1 of Run2"
 - Discussions focused on development, operations for Run2 and a review of the tasks on the critical path
- Computing and software groups are facing a higher trigger rate of more complex events, a smaller amount of processing per event collected, and fewer people
 - We will need to do more with less
 - Better tools to reduce effort in production operations and improve the efficiency of analysis tools
 - Improved flexibility of how resources are used through the data federation and the efficiency of using resources through dynamic data placement
 - Improved software integration and testing processes
 - Every efficiency gain is needed contingency