

CMS Status Report

Maria Girone, CERN David Lange, LLNL

Qutline

- Resource usage
- Preparing for Run2: Computing milestones and CSA14
- Software development and production schedule
- Resource requests for 2015
- Planning for 2020+

Pledge Usage

- CMS has used the highest percentage of pledged time at Tier-1
 - Many high priority activities are on-going
 - processing of simulation for Run1 analysis
 - production for the CSA14 commissioning challenge
 - preparation of upgrade samples
- Tier-2s have fluctuated around 100% with continued analysis
 - Run2 simulation will ramp up soon

2014 Computing Milestones

An intense testing & commissioning program throughout 2014 for validating changes of the CMS Computing model for Run2

- ✓ Data Management milestone: 30 April 2014
 - More transparent access to the data for users and production

- Done!
- Disk and tape separated to manage Tier-1 disk resources and control tape access
- Data federation and data access (AAA)
- Developing Dynamic Data Placement for handling centrally managed disk space
- ✓ Analysis Milestone: 30 June 2014
 - Demonstrate the full scale of the new CRAB3 distributed analysis tool

Done!

- Main changes are reducing the job failures in handling of user data products, improved job tracking and automatic resubmission
- Organized Production Milestone: 30 November 2014
 - Exercise the full system for organized production
 - Utilize the Agile Infrastructure (IT-CC and Wigner) at scale for the Tier-0
 - Run with multi-core at Tier-0 and Tier-1 for data reconstruction
 - Demonstrate shared workflows to improve latency and speed

Computing and CSA14

- Summer exercise (Computing, Software and Analysis challenge CSA14) for physics users and developer community: >150 users involved, started 2nd week of July, wrapping up now
 - For Computing and Offline this involved
 - Commissioning of a new mini-AOD format (nearly a factor of 10 smaller than the Run 1 AOD while targeting 80% of analysis users)
 - Commissioning of the data federation (AAA). The target is 20% of analysis access served over the wide area
 - Commissioning of the production workflows (SIM, DIGI, RECO)
 - Commissioning of the new analysis submission tool (CRAB3)
 - Production of the samples for the challenge
 - Production and reconstruction of ~2 billion 13TeV events under various pile-up scenarios for 25ns and 50ns running conditions
- Good opportunity to identify remaining weaknesses of the production system under high-load, which are currently being addressed

Data Federation

- During CSA14, AAA has been used to access data over the WAN via CRAB3
 - Target: 60k files/day, O(100TB)/day)
- Goal of the data federation scaling tests during the last few weeks of CSA14 has been to exceed 20% of analysis access
 - Phase 1: USA only (see plot)
 - Average incoming rate is 30TB/week for the 7 US Tier2 sites (40MB/s)
 - Phase 2: add Europe starting now
 - AAA deployment in Europe started later and we are expecting to have to invest more in validation

CRAB3

- CRAB3 usage remains a small fraction of the total user submission
 - CSA14 users were asked to use CRAB3
 - We further test operations at scale with Hammer Cloud
- User-driven MiniAOD production was done with CRAB3
 - Initial feedback from users is VERY positive!
 - User production was able to keep pace with central MiniAOD production

 We are developing a CRAB3 adoption plan before the beginning of Run2

Cloud and AI Testing

- CMS has been using the HLT for production activity for all of 2014
 - Began also using the CERN Al for production and Tier-0
 - We have demonstrated up to 5k simultaneous jobs

- Large scale tests are scheduled for later this fall pending that sufficient AI resources are available
 - Short full-scale tests need to be early enough to understand and solve problems identified before the run starts
 - Discussing with IT on how to achieve this goal

We are ready to begin production of Monte Carlo samples for 2015 startup:

- All changes to CMS detectors during shutdown reflected in geometry
- An improved material model for tracker implemented
- The detector simulation is updated to Geant 4.10
- Technical improvements over past year have resulted in a factor of 2 speed improvement

CSA14 exercise was first large scale test of recent CMSSW developments

- Simulation, digitization and reconstruction applications proved to be robust in processing of ~1.5 billion events
- Successfully integrated and deployed a new analysis data format: "MiniAOD"
 - ~10x reduction in size relative to AOD achieved through a number of approaches
 - Plan to produce the MiniAOD for 2015 in two ways:
 - 1. Together with the AOD format in the reconstruction workflow
 - 2. In a dedicated conversion workflow from the AOD to also include all available physics object recipes needed for analysis

- The CMSSW release for startup reconstruction is on track to be complete in December ("CMSSW_7_3_0")
 - We are now finishing an intermediate release of CMSSW that includes the first set of algorithmic changes for 25ns bunch spacing operations (for the "PHYS14" exercise)
 - Excellent multi-threaded performance of the reconstruction has been achieved over the summer
- We continue to support releases for Phase-I and Phase-II upgrade development work in dedicated releases
 - Even very high pileup workflows run within usual GRID resource constraints
 - Successful demonstration of recent developments in our MinBias event overlay algorithm and the flexibility of our tracking algorithms
 - Time/event is a challenge at 140-200 PU, but our tools have allowed us to keep up with rapid detector and reconstruction algorithm changes
 - We have started the process of integrating the code developed for Technical Proposal software developments into our mainstream CMSSW releases

Current CMS schedule calls for 2B events prepared in advance for 2 PU scenarios (one for 50 ns and one for 25 ns)

- 1B Gen-Sim will start soon!
- PHYS14 exercise being planned
 - Prepare high priority analysis for speedy results on first 1-5 fb⁻¹
- Run2 production release CMSSW_7_3 by December

Preparation Schedule

Multi-threaded FWK Deployment

- CMS plans to switch to multi-core processing for reconstruction by the beginning of Run2
 - Better I/O behavior, less merging, better memory footprint, fewer processes to track, and generally the direction for the future
 - Multi-core queues now exist at all the Tier-1 sites

Betails presented at North

- CMS has already achieved >99% parallel safe code and has excellent efficiency up to 8 cores
 - Computing is expected to receive CMSSW_7_2 as a production release in October

Resource Requests

- CMS is currently in the interactions with the Computing Resource Scrutiny group
 - The request endorsed for 2015 has very little contingency
 - We are continuing to optimize the Computing system to fit within the resource envelope
 - Setting priorities and making hard choices!
 - Reduced the number of reprocessing passes
 - Reduced the ratio of Monte Carlo events to the number of real data events (ratio of 1.3 AND the bulk can be reprocessed only once)
 - No contingency for mistakes
 - This interaction with C-RSG is a first look at 2016
 - Small changes expected in the instantaneous luminosity and a big increase in the live seconds of running expected wrt 2015

CMS

Preliminary Resource Request for 2016

- The largest requested increase is in Tier-2 CPU
 - The total volume of data to analyze drives the increase

- All quantities except the Tier-0 are predicted to grow faster than technology evolution
 - Some optimization is hopefully still possible with experience from the first year of Run2

						\mathcal{I}		
	2014	Increase from 2013	2015	Increase from 2014	2016	Increase from 2015	2017	Increase from 2016
Tier-0 CPU (kHS06)	121	0%	256 (256)	111%	302	18%	350	18%
Tier-0 Disk (TB)	7000	0%	3250 (3000)	Reallocated to CAF	3250	0%	3250	0%
Tier-0 Tape (TB)	26000	0%	31000 (31000)	31%	38000	23%	50000	31%
CAF CPU (kHS06)	0	0%	15 (15)	-	15	17%	17	21%
CAF Disk (TB)	0	0%	12100 (12000)	-	13100	8%	14000	7%
CAF Tape (TB)	0	0%	4000 (4000)	-	6000	50%	8000	33%
T1 CPU (kHS06)	175	0%	300 (300)	71%	400	33%	525	31%
T1 Disk (TB)	26000	0%	27000 (26000)	4%	35000	30%	45000	28%
T1 Tape (TB)	55000	11%	73500 (74000)	34%	100000	36%	135000	35%
T2 CPU (kHS06)	390	14%	500 (500)	25%	700	40%	800	14%
T2 Disk (TB)	27000	4%	31400 (29000)	16%	40000	27%	48000	20%

Maria Girone, CERN

Looking forward to Upgrades

 CMS is facing a huge increase in the scale of the expected computing needed for Run4

Phase	Pile-Up	HLT Output	Reconstruction time ratio to Run2	AOD Size ratio to Run2	Total Weighted Average Increase above Run2
Phase I (2019)	50	1kHz	4	1.4	3
Phase II (2024)	140	5kHz	20	3.7	65
Phase II (2024)	200	7.5kHz	45	5.4	200

- The WLCG Computing Model Evolution document predicts 25% processing capacity and 20% storage increase per year
 - Factor of 8 in processing and 6 in storage between now and Run4
 - Even assuming a factor of 2 code improvements the deficit is 4-13 in processing and 3-7 in storage

Targets for improvements

- It is unlikely we will get a factor of 5 more money, nor will the experiment be willing to take a factor of 5 less data
 - Big improvements are needed
- Roughly 40% of the CMS processing capacity is devoted to task identified as reconstruction
 - Prompt reconstruction, re-reconstruction, data and simulation reco
 - Looking at lower cost and lower power massively parallel systems like ARM and high performance processors like GPUs (Both can lower the average cost per processing)
- ~20% of the offline computing capacity is in areas identified as selection and reduction
 - Analysis selection, skimming, production of reduced user formats
 - Looking at dedicated data reduction solutions like event catalogs and big data tools like Map Reduce
- The remaining 40% is a mix
 - Lot of different activities with no single area to concentrate optimization effort
 - Simulation already has a strong ongoing optimization effort (in Geant4 and CMS)
 - User analysis activities developed by many people
 - Smaller scale calibration and monitoring activities

Organizational Changes

- CMS decided to merge the Offline and Computing organization over the next year (complete by Sept. 2015)
 - Does not put an artificial distinction between these closely related activities
 - Aligns CMS with the other LHC experiments
 - Makes communication lines clearer from outside
- CMS appointed Maria Girone and David Lange to co-lead the new joint project
 - The sub-projects will evolve in the new structure over the next year
 - We hope that the enlarged scope will strengthen the joint project and create new opportunities

Outlook

- CMS is using the long shutdown to improve the efficiency of our software and computing system
 - Data management and data access improvements are in commissioning.
 Production improvements will continue through the fall. Analysis improvements are in user testing
 - We are pushing forward the adoption of CRAB3 and pushing the testing the organized processing environment, including AI, to a reasonable scale
 - Streamlining software and computing workflows as we expect at best constant level of effort
- In addition to trying to handle day-to-day operations and prepare for Run2, we are assembling projects to do the innovative development needed to close the future resource gap in Run4
 - Offering leading-edge techniques may result in the injection of new people
 - An excellent area for collaborative work