Baryogenesis (and Higgs cosmology)

Stephan Huber, University of Sussex

BEACH2014, Birmingham, UK July 2014 Moduli-induced baryogenesis [arXiv:1407.1827] WIMPy baryogenesis [arXiv:1406.6105] Baryogenesis by black holes [arXiv:1406.6215] Inflatonic baryogenesis [arXiv:1405.1959] Affleck-Dine baryogenesis [1404.3108]

Leptogenesis: talk by Pedro Schwaller (Saturday)

Here: Electroweak baryogenesis

The baryon asymmetry

$$\eta_B = \frac{n_B}{n_\gamma} = (6.047 \pm 0.074) \times 10^{-10}$$

[Planck 2013]

Good agreement between CMB and primordial nucleosynthesis

 \rightarrow we understand the universe up to T~MeV

Can we repeat this success for the baryon asymmetry?

Problem: only 1 observable

- \rightarrow Need to be convinced by a specific model:
- Theory?, Experiment? (belief??)

 $T < TeV scale? \rightarrow EWBG$

[Particle Data Group]

Collider Higgs properties Model building New particles First-order Dark matter electroweak Phase transition **CP** violation **Electric dipole**

moments

Computational tools Transport hydrodynamics

Baryon asymmetry

Cosmic Magnetic fields

Gravitational

waves

Outline

- brief review (phase transition, baryogenesis)
- example 1: 2HDM: phase transition, baryogenesis, LHC
- gravitational waves, fluid dynamics: Gravitational wave production is dominated by sound waves
- example 2: scale breaking in hidden sector
- Summary & outlook

The basics

$$\eta_B = \frac{n_B}{n_\gamma} = (6.047 \pm 0.074) \times 10^{-10}$$

The mechanism

The mechanism

The mechanism

The strength of the PT

Thermal potential:

$$V(H,T) = m^2(T)H^2 - E(T)H^3 + \lambda(T)H^4$$

Bosons in the plasma:

SM: gauge bosons

strong PT: m_h<40 GeV (no top)

never (with realistic top mass)

Lattice: crossover for $m_h > 80 \text{ GeV} \rightarrow \text{the SM fails: } \underline{NEW PHYSICS!}$

Kajantie, Laine, Rummukainen, Shaposhnikov 1996

Csikor, Fodor, Heitger 1998

The strength of the PT

Thermal potential:

$$V(H,T) = m^2(T)H^2 - \frac{E(T)H^3}{A} + \lambda(T)H^4$$

Bosons in the plasma:

SM: gauge bosons

 $T > T_{c}$ $T = T_{c}$ Φ $T = T_{b}$

T>>T c

V_{eff}

SUSY: light stops [Laine, Nardini, Rummumainen '12]

2HDM: heavy Higgses [Dorsch, SJH, No '13]

• tree-level: extra singlets: λ SH², NMSSM, etc. [Kozaczuk et al.'14]

replace H⁴ by H⁶ or introduce H²log(H²), etc. [Dorsch, SJH, No '14]

Transport and CP violation

The interaction with the bubble wall induces a force on the particles, which is different for particles and antiparticles if CP is broken

$$(\partial_t + \dot{z}\partial_z + \dot{p}_z\partial_{p_z})f = \mathcal{C}[f]$$

Force:
$$\dot{p}_z = -\partial_z E(z, p_z)$$

$$E_{\pm} = E_0 \pm \Delta E_0$$

= $\sqrt{p^2 + m^2} \pm \theta' \frac{m^2}{2(p^2 + m^2)}$

collision terms, many?

"thick"

Joyce, Prokopec, Turok '95 Cline, Joyce, Kainulainen '00 Kainulainen, Prokopec, Schmidt, Weinstock '01-'04

Phase in fermion mass can vary along the wall (wall width L_w) e.g. because the phase between the Higgs vevs changes:

$$M(z) = m(z)e^{i\theta(z)}$$

The 2HDM

The 2HDM

$$V(H_1, H_2) = \mu_1^2 |H_1|^2 + \mu_2^2 |H_2|^2 + \mu_3^2 e^{i\phi} H_1^{\dagger} H_2 + \lambda_1 |H_1|^4 + \dots$$

 \rightarrow 4 extra physical Higgs degrees of freedom: 2 neutral, 2 charged

- \rightarrow CP violation, phase Φ (μ_3 breaks Z₂ symmetry softly)
- \rightarrow there is a phase induced between the 2 Higgs vevs

$$v_1 = \langle H_1 \rangle, \qquad v_2 e^{i\theta} = \langle H_2 \rangle$$

simplified parameter choice:

1 light Higgs $m_h \rightarrow SM$ -like

3 degenerate heavy Higgses $m_H \rightarrow keeps EW$ corrections small

early work: Turok, Zadrozny ' 91 Davies, Froggatt, Jenkins, Moorhouse ' 94 Cline, Kainulainen, Vischer ' 95 Cline, Lemieux '96

The phase transition

Evaluate 1-loop thermal potential:

loops of heavy Higgses generate a cubic term

- → strong PT for m_H>300 GeV m_h up to 200 GeV
- \rightarrow PT ~ independent of Φ

→ thin walls only for very strong PT (agrees with Cline, Lemieux '96)

[Fromme, S.H., Senuich '06]

The bubble wall

Solve the field equations with the thermal potential \rightarrow wall profile $\Phi_i(r)$

kink-shaped with wall thickness L_w

θ becomes dynamical

(numerical algorithm for multi-field profiles, T. Konstandin, S.H. ⁽⁰⁶⁾

The baryon asymmetry

- The relative phase between the Higgs vevs, θ , changes along the bubble wall \rightarrow phase of the top mass varies $\theta_t = \theta/(1 + \tan^2\beta)$ top transport generates a baryon asymmetry, but tanβ<10 (?) \rightarrow only one phase, so EDMs
 - → only one phase, so EDMs can be predicted: here $d_n=0.1 \ 10^{-26} - 7 \ 10^{-26} e cm$ exp. bound: $d_n < 3.0 \ 10^{-26} e cm$

$$\eta_B$$
 in units of 10⁻¹¹, ϕ =0.2

The baryon asymmetry

The relative phase between the Higgs vevs, θ , changes along the bubble wall → phase of the top mass varies $\theta_t = \theta / (1 + \tan^2 \beta)$ top transport generates a baryon asymmetry, but tanβ<10 (?) → only one phase, so EDMs can be predicted: here d₀=0.1 10⁻²⁶ - 7 10⁻²⁶ e cm exp. bound: d_n< 3.0 10⁻²⁶ e cm

 η_B in units of 10⁻¹¹, ϕ =0.2

In progress: update using the new bound on the electron EDM

More general parameter scan

[Dorsch, S.H., No, 2013]

$$\begin{split} V_{tree}(\Phi_{1},\Phi_{2}) &= -\mu_{1}^{2}\Phi_{1}^{\dagger}\Phi_{1} - \mu_{2}^{2}\Phi_{2}^{\dagger}\Phi_{2} - \frac{\mu^{2}}{2}\left(e^{i\phi}\Phi_{1}^{\dagger}\Phi_{2} + H.c.\right) + \\ &+ \frac{\lambda_{1}}{2}\left(\Phi_{1}^{\dagger}\Phi_{1}\right)^{2} + \frac{\lambda_{2}}{2}\left(\Phi_{2}^{\dagger}\Phi_{2}\right)^{2} + \lambda_{3}\left(\Phi_{1}^{\dagger}\Phi_{1}\right)\left(\Phi_{2}^{\dagger}\Phi_{2}\right) + \\ &+ \lambda_{4}\left(\Phi_{1}^{\dagger}\Phi_{2}\right)\left(\Phi_{2}^{\dagger}\Phi_{1}\right) + \frac{\lambda_{5}}{2}\left[\left(\Phi_{1}^{\dagger}\Phi_{2}\right)^{2} + H.c.\right] \end{split}$$

Type I or II, softly broken

No CP violation, i.e. $\Phi=0$

We analyze the thermal 1-loop potential

 $\begin{array}{rl} 0.4 \leq \ \tan\beta \leq 10, \\ -\frac{\pi}{2} < \ \alpha & \leq \frac{\pi}{2}, \\ 0 \ \mathrm{GeV} \leq & \mu \leq 1 \ \mathrm{TeV}, \\ 100 \ \mathrm{GeV} \leq & m_{A^0}, \ m_{H^{\pm}} \leq 1 \ \mathrm{TeV}, \\ 150 \ \mathrm{GeV} \leq & m_{H^0} \leq 1 \ \mathrm{TeV}. \end{array}$

(parameter ranges, m_h=125 GeV)

Constraints: rho-parameter $B \rightarrow s \gamma$, B-Bbar mixing

Type II

SM like Higgs?

Di-photon channel

Preference for a heavy pseudoscalar

[Dorsch, S.H., Mimasu, No '14]

Preference for a large negative λ_5

$$\frac{\lambda_5}{2} \left[\left(\Phi_1^{\dagger} \Phi_2 \right)^2 + H.c. \right]$$

The strong phase transition at LHC

<u>Search for $A_0 \rightarrow H_0Z \rightarrow II bb$ </u> [Dorsch, S.H., Mimasu, No '14]

	Signal	$t \overline{t}$	Z b ar b	ZZ	Zh
Event selection	14.6	1578	424	7.3	2.7
$80 < m_{\ell\ell} < 100~{\rm GeV}$	13.1	240	388	6.6	2.5
$\begin{array}{l} H_T^{\rm bb} > 150 {\rm GeV} \\ H_T^{\ell\ell \rm bb} > 280 {\rm GeV} \end{array}$	8.2	57	83	0.8	0.74
$\Delta R_{bb} < 2.5, \ \Delta R_{\ell\ell} < 1.6$	5.3	5.4	28.3	0.75	0.68
$m_{bb}, m_{\ell\ell bb}$ signal region	3.2	1.37	3.2	< 0.01	< 0.02

Discovery needs ~ 40 fb⁻¹ (at 14 TeV) (m^{\pm} =400 GeV, m_{Ho} =180 GeV)

a strong phase transition in the 2HDM is very much consistent with a SM-like light Higgs

specific predictions for the mass spectrum and certain coupling constants

testable at LHC

Inert 2HDM:

$$V(\Phi_1, \Phi_2) = m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 + \frac{\lambda_1}{2} (\Phi_1^{\dagger} \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^{\dagger} \Phi_2)^2 + \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \frac{\lambda_5}{2} \left[(\Phi_1^{\dagger} \Phi_2)^2 + (\Phi_2^{\dagger} \Phi_1)^2 \right]$$

doublet 2 does not get a vev

Dark matter

CP violation from higher-dim. Operators

similar: Higgs + scalar singlet + fermion singlet dark matter [Fairbairn, Hogan 2013]

NMSSM-like SUSY, e.g.

[Menon, Morrissey, Wagner '04]

$$\begin{aligned} &\mathbb{Z}_2: \quad \Phi_1 \to \Phi_1 \,, \qquad \Phi_2 \to -\Phi_2 \,, \\ &\mathbb{Z}'_2: \quad \Phi_1 \to -\Phi_1 \,, \qquad \Phi_2 \to \Phi_2 \,, \qquad f_R \to -f_R \,, \end{aligned}$$

[Gil, Chankowski, Krawczyk 2012]

Numerical Simulations

of a first-order phase transition and gravitational waves (with Hindmarsh, Rummukainen, Weir)

Gravitational waves

sources of GW's: direct bubble collisions

turbulence

(magnetic fields)

sound waves

key parameters: available energy

$$\alpha = \frac{\text{latent heat}}{\text{radiation energy}}$$

typical bubble radius

$$\langle R \rangle \propto v_b \tau \approx \frac{v_b}{\beta}.$$

v_b wall velocity

LISA / eLISA

Grojean, Servant '06

The envelope approximation: Kosowsky, Turner 1993

Energy momentum tensor of expanding bubbles modelled by expanding infinitely thin shells, cutting out the overlap → very non-linear!

Tested by colliding two pure scalar bubbles

Recent scalar field theory simulation: Child, Giblin 2012

What happens if the fluid is relevant?

Turbulence??

We performed the first 3d simulation of a scalar + relativistic fluid system:

$$V(\phi,T) = \frac{1}{2}\gamma(T^2 - T_0^2)\phi^2 - \frac{1}{3}\alpha T\phi^3 + \frac{1}{4}\lambda\phi^4.$$

(Thermal scalar potential)

$$-\ddot{\phi} + \nabla^2 \phi - \frac{\partial V}{\partial \phi} = \mathcal{N} V (\dot{\phi} + V^i \partial_i \phi)$$

(Scalar eqn. of motion)

$$\dot{E} + \partial_i (EV^i) + P[\dot{W} + \partial_i (WV^i)] - \frac{\partial V}{\partial \phi} W(\dot{\phi} + V^i \partial_i \phi)$$
$$= \eta V^2 (\dot{\phi} + V^i \partial_i \phi)^2. \quad (7)$$

(eqn. for the energy density)

$$\dot{Z}_i + \partial_j (Z_i V^j) + \partial_i P + \frac{\partial V}{\partial \phi} \partial_i \phi = \Theta W (\dot{\phi} + V^j \partial_j \phi) \partial_i \phi.$$

(eqn. for the momentum density)

$$\ddot{u}_{ij} - \nabla^2 u_{ij} = 16\pi G(\tau^{\phi}_{ij} + \tau^{\mathrm{f}}_{ij}),$$

(eqn. for the metric perturbations)

Types of single bubble solutions:

Espinosa, Konstandin, No, Servant '10

GW Spectrum

longitudinal and transverse part of the fluid stress

Logitudinal part dominates Basically sound waves

Strength of the GW signal:

$$\Omega_{\rm GW} \simeq \frac{3\Pi^2}{4\pi^2} (H_*\tau_{\rm s}) (H_*R_*) (1+w)^2 \overline{U}_{\rm f}^4,$$

simulation

$$\Omega_{\rm GW} \simeq \frac{0.11 v_{\rm w}^3}{0.42 + v_{\rm w}^2} \left(\frac{H_*}{\beta}\right)^2 \frac{\kappa^2 \alpha_T^2}{(\alpha_T + 1)^2}$$

env. appr.

Enhancement by au

$$au_{
m s}/R_*v_{
m w}$$

What sets τ_s ? Hubble time?

Scale invariant Higgs

Higgs mass stabilized by conformal symmetry,

[Abel, Mariotti '13]

Transmitted to the SM by gauge mediation:

$$\delta V_{\text{eff}} \equiv V_0 = -\frac{m_h^2}{4} h^2 \left(1 + X \log\left[\frac{h^2}{v^2}\right] \right) + \frac{\lambda}{4} h^4$$

Broken in a hidden sector,

Summary

wealth of new constraints on a possible electroweak phase from measured Higgs properties

strong phase transition and baryogenesis in the 2HDM model is easy to realize and consistent with a SM-like light Higgs

new scalars at the LHC? EDMs?

first 3d numerical simulation of scalar + fluid

GW production by sound waves

no sign of turbulence

breaking of scale invariance in a hidden sector leads to a strong phase transition, giving a potentially observable gravitational wave spectrum