Open heavy-flavour and quarkonium measurements with ALICE at the LHC

Nicole Bastid for the ALICE Collaboration LPC Clermont-Ferrand, IN2P3-CNRS, UBP, France (Nicole.Bastid@clermont.in2p3.fr)

Outline

- ☐ Physics motivations
- Open-heavy flavours and quarkonia with ALICE
- ☐ Selection of results in p-Pb and Pb-Pb collisions
 - Nuclear modification factor
 - Elliptic flow
 - Model comparisons
- □ Conclusion

Heavy flavours as a medium probe

- ► Large mass (m_c ~ 1.5 GeV, m_b ~ 5 GeV) → heavy quarks are produced in initial hard scatterings with a short formation time τ_f ~ 1/2m_{c/b} ~ 0.1 fm/c << τ_{OGP} ~ 5-10 fm/c
- > Experience the full collision history, sensitive to the medium properties

Open heavy flavours in A-A collisions

- \square Probe parton energy loss (high p_T)
- \square Participation in the collective expansion (low p_T)

Quarkonia (cc, bb) in A-A collisions

- Suppression by colour screening
- □ Regeneration via recombination of heavy quarks

Energy Density

Phys.Lett B 178 (1986) 416

Phys. Lett. B 490 (2000) 196; Phys. Rev. C (2001) 054905

Observables

- □ Nuclear modification factor: $R_{AA}(p_{\rm T}) = 1/\langle N_{\rm coll} \rangle \times \frac{dN_{\rm AA}/dp_{\rm T}}{dN_{\rm pp}/dp_{\rm T}}$
- $\square \text{ Elliptic flow, } \textbf{\textit{v}}_{\textbf{2}} \text{: } \frac{2\pi}{N} \frac{\mathrm{dN}}{\mathrm{d}\varphi} = 1 + \sum_{n=1}^{\infty} 2v_n cos[n(\varphi \Psi_n)] \text{ with } v_2 = \langle cos[2(\varphi \Psi_n)] \rangle$

Heavy flavours in pp and p-A collisions

The heavy-ion physics program with heavy flavours requires also:

p-A collisions

- Control experiment for A-A collisions
- □ Cold nuclear matter effects
 - Nuclear modification of Parton Distribution Functions (PDF): shadowing or gluon saturation
 - Energy loss
 - $k_{\rm T}$ broadening, multiple interactions
 - Nuclear absorption of quarkonia

pp collisions

- Reference for A-A collisions
- ☐ Test of perturbative QCD calculations
- Insights into production mechanisms

- K. J. Eskola et al., JHEP 0904 (2009) 65
- D.E. Kharzeev et al., arXiv:1205.1554
- F. Dominguez et al., arXiv:1109.1250
- R. Vogt, Phys. Rev C81 (2010) 044903
- F. Arleo et al., arXiv:1204.4609
- C. Lourenco et al., JHEP 0902 (2009) 014

ALICE central barrel

Semi-electronic decays:

D, B, Λ_c , ... \rightarrow e + anything Hadronic decays:

 $D^0 \rightarrow K^-\pi^+$ $D^+_s \rightarrow K^+K^-\pi^+$

 $D^+ \rightarrow K^-\pi^+\pi^+ \quad D^{*+} \rightarrow D^0\pi^+$

Charmonium:

 $J/\Psi \rightarrow e^+e^-$

e[±] ← b, c: background e[±] via data-tuned cocktail, e⁺e⁻ invariant mass $e^{\pm} \leftarrow b$ via electron impact parameter

D mesons, J/Ψ via invariant mass analysis

ALICE muon spectrometer

Semi-muonic decays:

D, B, Λ_c , ... $\rightarrow \mu$ + anything Quarkonia down to $p_T = 0$

- Charmonia:
 J/Ψ, Ψ(2S) → μ⁺μ⁻
- Bottomonia: $Y(1S), Y(2S) \rightarrow \mu^{+}\mu^{-}$

Track selection

- Acceptance & geometrical cuts
- Tracks matched with trigger
- Pointing angle to the vertex

$$\mu^{\pm} \leftarrow b, \, c$$

 Subtract remaining background μ ← primary π, K decays with data-tuned MC cocktail

Quarkonia

Invariant mass analysis

Open heavy-flavour results

- \Box p-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
 - ✓ Rapidity shift: $|\Delta y| = 0.465$ in the p-beam direction (positive y)
 - ✓ Two configurations:
 - > p-Pb, muon spectrometer in p-going direction
 - > Pb-p, muon spectrometer in Pb-going direction
- \Box Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

D mesons: R_{pPb} vs p_T

minimum bias collisions

$$R_{pPb}(p_{\rm T}) = 1/A \times \frac{d\sigma_{\rm AA}/dp_{\rm T}}{d\sigma_{\rm pp}/dp_{\rm T}}$$

ALICE: arXiv:1405.3452

CGC: H.Fujii and K. Watanable, arXiv: 1308.1258

pQCD NLO (MNR): Nucl. Phys. B 373 (1992) 295, EPS09:

K. J. Eskola et al., JHEP 04 (2009) 065Vitev: Phys. Rev. C 80461 (2009) 054901

- □ Nuclear modification factor (R_{pPb}) consistent with unity within uncertainties in the region $p_T > 2 \text{ GeV}/c$
- \Box D-meson R_{pPb} in agreement with:
 - Perturbative QCD calculations including EPS09 parameterization of shadowing
 - Color Glass Condensate (CDG) predictions
 - Model including energy loss, shadowing and k_T broadening

Heavy-flavour decay electrons: R_{pPb} vs p_T

- □ R_{pPb} consistent with unity within uncertainties for electrons from heavy-flavour hadron decays and beauty-hadron decays
- \square R_{pPb} in agreement with perturbative QCD calculations including EPS09 parameterization of shadowing

Heavy-flavour decay muons: R_{pPb} vs p_T

- \square R_{pPb} at forward rapidity consistent with unity within uncertainties over the whole measured p_T region
- \square R_{pPb} at backward rapidity slightly larger than unity in $2 < p_{\text{T}} < 4$ GeV/c and close to unity at higher p_{T}
- R_{pPb} in agreement with perturbative QCD calculations including EPS09 parameterization

D mesons: R_{AA} vs p_{T} and centrality

$$R_{AA}(p_{\rm T}) = 1/\langle N_{\rm coll} \rangle \times \frac{dN_{\rm AA}/dp_{\rm T}}{dN_{\rm pp}/dp_{\rm T}}$$

- □ Strong suppression at high p_T in central Pb-Pb collisions relative to the binary scaled pp reference (a factor of about 4 at p_T = 5 GeV/c in 0-7.5%)
- \square Measured suppression is a final-state effect (R_{pPb} close to unity)
- Non-prompt J/ Ψ (i.e from B decays) measured by CMS more suppressed than D mesons in central collisions: consistent with the expectation $\Delta E_c > \Delta E_b$ (due to the dead cone effect, Phys. Lett. B 519 (2001) 1999) [Similar $< p_T > (\sim 10 \text{ GeV/c})$ for D and B \rightarrow J/ Ψ , rapidity range slightly different]

Heavy-flavour decay leptons: R_{AA} vs p_{T}

- Strong suppression measured at high p_T in the most central Pb-Pb collisions (a factor 3-4 in $4 < p_T < 10$ GeV/c) for both heavy-flavour decay electrons (|y| < 0.6) and muons (2.5 < y < 4)
- \square Measured suppression is a final-state effect (R_{pPb} close to unity)
- ☐ Hint for a suppression of electrons from beauty-hadron decays in Pb-Pb: R_{AA} < 1 for p_T > 3 GeV/c

Heavy-flavour decay lepton v_2 in Pb-Pb

initial spatial anisotropy → momentum anisotropy

$$\frac{2\pi}{N} \frac{dN}{d\varphi} = 1 + \sum_{n=1}^{\infty} 2v_n cos[n(\varphi - \Psi_n)]$$

with
$$v_2 = \langle cos[2(\varphi - \Psi_n)] \rangle$$

- Positive heavy-flavour lepton v_2 measured (> 3σ effect) in semi-central collisions and at intermediate p_T
 - Significant interaction of heavy quarks with the medium
 - ➤ Suggest collective motion of low p_T heavy quarks (mainly charm) in the expanding fireball
- Positive V_2 also measured for D mesons (ALICE, Phys. Rev. Lett. 111 (2013) 102301)

Model comparisons: R_{AA} and V_2

- Reasonable agreement with models including in-medium energy loss
- \square Simultaneous measurement of R_{AA} and v_2 allows one to constrain models ₁₄

Quarkonium results

- \Box p-Pb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV
 - ✓ Rapidity shift: $|\Delta y| = 0.465$ in the p-beam direction (positive y)
 - ✓ Two configurations:
 - > p-Pb, muon spectrometer in p-going direction
 - > Pb-p, muon spectrometer in Pb-going direction
- \square Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV

$J/\Psi: R_{pPb}$ vs rapidity and p_T

Mid-rapidity

Forward

- □ Data in reasonable agreement with NLO calculations including EPS09 shadowing
- Coherent energy loss model overestimates the suppression at forward rapidity and low p_{T}
- ☐ CGC model overestimates suppression at forward rapidity

JMP E22 (2013) 1330007; K.Eskola et al., JHEP 04467 (2009) 065; F. Arleo et al., JHEP 1303 (2013) 122; H. Fujii et al., Nucl. Phys. A 915

J/Ψ R_{AA} : differential measurements in Pb-Pb

ALICE rapidity regions: |y| < 0.8, 2.5 < y < 4

- ALICE, Phys. Lett. B 734 (2014) 314
- ☐ Clear suppression at forward rapidity, slightly larger than measured at mid-rapidity in central collisions
- $lue{\Box}$ Suppression measured at the LHC increases with increasing p_T and is smaller than that observed at RHIC
- Results consistent with a significant fraction of J/ Ψ from recombination at low p_T

J/Ψ elliptic flow in Pb-Pb

- Positive v_2 in semi-central collisions (20-40% centrality) at intermediate p_T (2.7 σ effect)
- □ Consistent with a significant fraction of J/Ψ from the recombination of charm quarks in a flowing medium

$\Psi(2S)$: R_{pPb} vs p_T with comparisons to J/Ψ results and models

p-Pb: backward rapidity

p-Pb: forward rapidity

- ALICE, arXiv: 1405.3796
- $\Psi(2S)$ more suppressed than J/ Ψ at forward and backward rapidity
- $\Psi(2S)$ suppression not described by model predictions including only initial-state effects
- \square Indication for sizeable final-state effects on $\Psi(2S)$ production such as the interaction of the cc pair with the final state hadronic system formed in p-Pb collisions

Y: R_{pPb} and R_{AA} vs rapidity

- p-Pb: indication of a suppression at forward rapidity and consistent with no suppression at backward rapidity
- □ Pb-Pb: strong suppression at forward rapidity that cannot be ascribed to only cold nuclear matter effects
 - Larger at forward rapidity than at mid-rapidity
- \square Pb-Pb: transport model does not reproduce the R_{AA} rapidity dependence and underestimates the measured suppression

Conclusion

Open heavy-flavour measurements

- ☐ Open heavy-flavour production in p-Pb collisions is well described by pQCD calculations including shadowing predictions
- ☐ The measured suppression of open heavy-flavour production at high p_T in central Pb-Pb collisions is a medium effect (R_{pPb} close to unity at high p_T) related to in-medium parton energy loss
- ☐ Heavy quarks participate in the collective expansion of the system

Quarkonium measurements

- □ J/Ψ suppression in p-Pb collisions is in reasonable agreement with shadowing and coherent energy loss models
- \Box Final-state effects on the $\Psi(2S)$ production in p-Pb collisions
- □ The measured J/ Ψ suppression in Pb-Pb collisions is consistent with a significant fraction of J/ Ψ from regeneration (low p_T)
- ☐ The Y suppression in Pb-Pb collisions is not reproduced by models

More measurements to come with the LHC run II and ALICE upgrades

Backup

Data samples: p-Pb, $\sqrt{s_{NN}}$ = 5.02 TeV

Observable	Integrated luminosity
D mesons	48.6 μb ⁻¹ (MB trigger, mid-rapidity)
$e^{\pm} \leftarrow c, b$	48.6 μb ⁻¹ (MB trigger, mid-rapidity)
μ [±] ← c, b	196 μb ⁻¹ (low p _T μ trigger, forward rapidity) 4.9x10 ³ μb ⁻¹ (high p _T μ trigger, forward rapidity)
	254 μb ⁻¹ (low p_T μ trigger, backward rapidity) 5.8x10 ³ μb ⁻¹ (high p_T μ trigger, backward rapidity)
$J/\Psi \rightarrow e^+e^-$	48.6 μb ⁻¹ (MB trigger, mid-rapidity)
J/Ψ, Ψ(2S),Υ→ μ⁺μ⁻	5.0 nb ⁻¹ (unlike-sign μ trigger, forward rapidity) 5.8 nb ⁻¹ (unlike-sign μ trigger, backward rapidity)

Data samples: Pb-Pb, $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

Observable	Integrated luminosity
D mesons	2010: 2.12 μb ⁻¹ (0-80%) 2011: 23 μb ⁻¹ (0-10%), 6.2 μb ⁻¹ (10-30%), 6.2 μb ⁻¹ (30-50%)
$e^{\pm}\leftarrow c$, b	2010: 2.0 μb ⁻¹ (0-80%) 2011: 22 (37) μb ⁻¹ in 0-10% and 6 (34) μb ⁻¹ in 20-40% with MB (EMCAL) triggers
$\mu^{\pm} \leftarrow c$, b	2010: 2.7 μb ⁻¹ (0-80%) 2011: 11.3 μb ⁻¹ (0-10%) and 3.5 μb ⁻¹ in 10-40%
J/Ψ → e⁺e⁻	2010 & 2011:: 27.7 μb ⁻¹ in 0-90%
J/Ψ, Ψ(2S),Y→ μ⁺μ⁻	69 μb ⁻¹ in 0-90% with unlike-sign μ trigger

D-mesons: R_{pPb} vs p_T

- > Reconstruction of hadronic decays displaced from the interaction vertex
- □ Nuclear modification factor (R_{pPb}) consistent with unity within uncertainties for all D-meson species with no significant p_T dependence
- \Box D-meson R_{pPb} in agreement with:
 - Perturbative QCD calculations with EPS09 shadowing
 - Color Glass Condensate (CDG) predictions
 - Model including energy loss, shadowing and k_T broadening

ALICE: arXiv:1405.3452

CGC: H.Fujii and K. Watanable, arXiv: 1308.1258

pQCD NLO (MNR): Nucl. Phys. B 373 (1992) 295, EPS09: K. J. Eskola et al., JHEP 04 (2009) 065

Vitev: Phys. Rev. C 80461 (2009) 054901

W-boson production in p-Pb

☐ Production cross sections of muons from W-boson decays measured at forward and backward rapidity

The LHC: a heavy-flavour factory

PLB 721 (2013) 13 & arXiv:1405.4144

- □ Abundant heavy-flavour production rates at the LHC, have been measured in pp collisions
 - $\sigma_c(LHC) = \sigma_c(RHIC) \times 10$
 - $\sigma_b(LHC) = \sigma_b(RHIC) \times 50$
- ☐ Central (5%) Pb-Pb (LHC, 2.76TeV): ~60 cc & ~2 bb (MNR code: Nucl. Phys. B 373 (1992) 295; EKS98, EPS08: EPJ C9 (1999) 61, JHEP07 (2008) 102)

Differential cross sections in pp, √s = 2.76 TeV

Good agreement within uncertainties with Pqcd calculations

Heavy-flavour decay muons in p-Pb forward-to-backward ratio

Particle IDentification (PID) in ALICE

Charmonium production in pp

- □ J/Ψ measured in pp collisions at 2.76 TeV and 7 TeV
- ☐ Good agreement between data and theory
- Reference data for p-Pb and Pb-Pb

J/Y production in p-Pb collisions

- ☐ Cold nuclear matter effects are not negligible, in particular at forward rapidity
- lacktriangle Different p_T dependencies of the nuclear modification factor in p-Pb and Pb-Pb collisions
- ☐ Hint for enhancement at low p_T in Pb-Pb relative to p-Pb and the suppression at high p_T is a hot matter effect

J/Ψ elliptic flow

- ☐ Indication of a non-zero v₂ at the LHC
- ☐ In favour of production in the QGP i.e. from charm quarks (regeneration)
- \Box In contrast to this observation, STAR experiment at RHIC measures $v_2 = 0$

Y production in pp collisions

- ☐ Nice agreement between the ALICE and LHCb experiments
- ☐ pp results: understanding production mechanisms

Y: R_{AA} & model comparisons

ALICE, arXiv:1405.4493

- Strong Y suppression at forward rapidity in Pb-Pb collisions that cannot be ascribed to only cold nuclear matter effects
 - Increases with increasing centrality
 - Larger at forward rapidity than at mid-rapidity
- ☐ Transport model does not reproduce the R_{AA} rapidity dependence and underestimates the measured suppression at forward rapidity

Y measurements in p-Pb collisions

Consistent with suppression at forward

- ☐ Forward: better agreement with energy loss and shadowing
- ☐ Backward: better agreement with energy loss