$\bar{B}_s \rightarrow K$ semileptonic decay from an Omnès improved constituent quark model

C. Albertus¹, E.Hernández², C. Hidalgo-Duque³ and J. Nieves³

¹ Universidad de Granada, Spain

² Universidad de Salamanca, Spain

³ Instituto de Física Corpuscular (IFIC), Valencia, Spain

C. Albertus, E.Hernández, C. Hidalgo-Duque and J. Nieves, arXiv:1404:1001

Introduction

There is a large discrepancy between the $|V_{ub}|$ values obtained from exclusive and inclusive reaction analyses.

$$|V_{ub}| = (4.41 \pm 0.15^{+0.15}_{-0.17}) \times 10^{-3}$$
 Inclusive
 $|V_{ub}| = (3.23 \pm 0.31) \times 10^{-3}$ Exclusive ($B \rightarrow \pi$ dominated)
Eaken from C. Albertus et al., PRD in print, arXiv:1406.7782

Any new determination of $|V_{ub}|$ is relevant.

In particular the $\bar{B}_s \to K^+ \ell^- \bar{\nu}_\ell$ decay channel is expected to be observed at LHCb and Belle.

Introduction II

We attack the problem as in our previous study of the $B \rightarrow \pi$ decay [C. Albertus et al., Phys. Rev. D 72, 033002 (2005)].

- We start with a simple constituent quark model whose valence quark contribution we supplement with a \bar{B}^* -pole one. In this way you get a reasonable description of the f^+ dominant form factor at high q^2 .
- The quark model does not work well at low q^2 where the kaon recoil is largest.
- To correct the behaviour in that region we use an Omnès functional form for the f^+ form factor and make a combined fit to our quark model results at high q^2 and LCSR results at low q^2 .

Form factor decomposition and decay width

 $0^- \rightarrow 0^-$ transition

$$\langle K^+, \vec{p}_K | \bar{\Psi}_u(0) \gamma^\mu (1 - \gamma_5) \Psi_b(0) | \bar{B}_s, \vec{p}_B \rangle = \left(P^\mu - q^\mu \frac{M_{B_s}^2 - M_K^2}{q^2} \right) f^+(q^2)$$
$$+ q^\mu \frac{M_{B_s}^2 - M_K^2}{q^2} f^0(q^2)$$

with $P = p_B + p_K$, $q = p_B - p_K$.

For zero lepton masses, the differential decay width reads

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2}{24\pi^3} \left| V_{ub} \right|^2 \left| \vec{p}_K \right|^3 \left| f^+(q^2) \right|^2$$

Quark model evaluation of the form factors: valence contribution

For a B_s at rest and taking \vec{q} along the Z+ direction

$$f^{+}(q^{2}) = \frac{1}{2M_{B_{s}}} \left[V^{0}(|\vec{q}|) + \frac{V^{3}(|\vec{q}|)}{|\vec{q}|} \left(E_{K} - M_{B_{s}} \right) \right]$$
$$f^{0}(q^{2}) = \frac{1}{2M_{B_{s}}} \left\{ V^{0}(|\vec{q}|) \frac{q^{2} + M_{B_{s}}^{2} - M_{K}^{2}}{M_{B_{s}}^{2} - M_{K}^{2}} + \frac{V^{3}(|\vec{q}|)}{|\vec{q}|} \left[E_{K} \frac{q^{2} + M_{B_{s}}^{2} - M_{K}^{2}}{M_{B_{s}}^{2} - M_{K}^{2}} + M_{B_{s}} \frac{q^{2} - M_{B_{s}}^{2} + M_{K}^{2}}{M_{B_{s}}^{2} - M_{K}^{2}} \right] \right\}$$

within the quark model the V^0 and V^3 vector matrix elements are given

$$\begin{split} V^{0}(|\vec{q}\,|) &= \sqrt{2M_{B_{s}}2E_{K}} \, \int d^{3}p \, \frac{1}{4\pi} \Phi_{K}^{*}(|\vec{p}\,|) \, \Phi_{B_{s}}(|\vec{p}-\frac{m_{s}}{m_{u}+m_{s}}|\vec{q}\,|\vec{k}\,|) \\ & \sqrt{\frac{\hat{E}_{u}\hat{E}_{b}}{4E_{u}E_{b}}} \left(1 + \frac{(-\frac{m_{u}}{m_{u}+m_{s}}\,|\vec{q}\,|\vec{k}-\vec{p}\,) \cdot (\frac{m_{s}}{m_{u}+m_{s}}\,|\vec{q}\,|\vec{k}-\vec{p}\,)}{\hat{E}_{u}\hat{E}_{b}}\right) \\ V^{3}(|\vec{q}\,|) &= \sqrt{2M_{B_{s}}2E_{K}} \, \int d^{3}p \, \frac{1}{4\pi} \Phi_{K}^{*}(|\vec{p}\,|) \, \Phi_{B_{s}}(|\vec{p}-\frac{m_{s}}{m_{u}+m_{s}}\,|\vec{q}\,|-p_{z}) \\ & \sqrt{\frac{\hat{E}_{u}\hat{E}_{b}}{4E_{u}E_{b}}} \left(\frac{\frac{m_{s}}{m_{u}+m_{s}}\,|\vec{q}\,|-p_{z}}{\hat{E}_{b}} + \frac{-\frac{m_{u}}{m_{u}+m_{s}}\,|\vec{q}\,|-p_{z}}{\hat{E}_{u}}\right) \end{split}$$

where $\hat{E}_q = E_q + m_q$. Wave functions are evaluated using the AL1 potential [C. Semay and B. Silvestre-Brac, Z. Phys. C61, 271 (1994)]

Quark model evaluation of the form factors: valence contribution II

Valence contribution to f^+ does not contain the B^* -pole structure at high q^2 . At low q^2 these form factors deviate from the ones calculated in LCSR.

Quark model evaluation of the form factors: B^* -pole contribution

$$f_{B^*}(q^2) = \frac{\sqrt{6}}{(q^2)^{1/4} \pi} \int_0^\infty d|\vec{p}| \Phi_{B^*_u}(|\vec{p}|) \, |\vec{p}|^2 \sqrt{\frac{\widehat{E}_b \widehat{E}_u}{4E_b E_u}} \left(1 + \frac{|\vec{p}|^2}{3\widehat{E}_b \widehat{E}_u}\right) = f_{B^*} \sqrt{\frac{M_{B^*}}{\sqrt{q^2}}}$$

For f_{B^*} we get $f_{B^*} = 151 MeV$ which is small compared to QCDSR and Lattice determinations that are around 200 MeV.

Quark model evaluation of the form factors: B^* -pole contribution II

We get $g_{B^*B_sK} = 49.88$ compared to the LCSR prediction $g_{B^*B_sK} = 29$ obtained in Z.-H- Li et al., PRD 64, 057901 (2001).

As for the product $g_{B^*B_sK} f_{B^*}$ we find $g_{B^*B_sK} f_{B^*} = 7.53 \,\text{GeV}$

Large compared to the LCSR prediction $g_{B^*B_sK} f_{B^*} = 3.57 - 4.19 \text{ GeV}$ by Z.-H- Li et al.

But in agreement with the LQCD plus SU(3) symmetry result $g_{B^*B_sK} f_{B^*} = 7.49 \pm 1.85 \,\text{GeV}$ (K.C. Bowler et al., NPB619, 507 (2001). A. Abada et al., JHEP 0402,016 (2004))

We will finally use $g_{B^*B_sK} f_{B^*} = 7.49 \pm 2.38 \,\mathrm{GeV}$

Quark model evaluation of the form factors: Full calculation

LQCD points from C.M. Bouchard et al., arXiv:1310:3207 LCSR from G. Duplancic and B. Melic, PRD78,054015 (2008)

Omnès representation of the f^+ **form factor and fit**

Omnès representation is based on analiticity and unitarity. For a sufficiently large number of subtractions one can write

$$f^{+}(q^{2}) \approx \frac{1}{M_{B^{*}}^{2} - q^{2}} \prod_{j=0}^{n} \left[f^{+}(q_{j}^{2}) \left(M_{B^{*}}^{2} - q_{j}^{2} \right) \right]^{\alpha_{j}(q^{2})} , \ \alpha_{j}(q^{2}) = \prod_{\substack{j \neq k=0 \\ q_{j}^{2} - q_{k}^{2}}}^{n} \frac{q^{2} - q_{k}^{2}}{q_{j}^{2} - q_{k}^{2}}$$

We follow J. M. Flynn and J. Nieves, PRD76,031302 (2007) and take for q_j^2 the four different values 0, $q_{\text{max}}^2/3$, $2q_{\text{max}}^2/3$ and q_{max}^2 .

We treat $f^+(q_j^2)$ as free parameters and make a combined χ^2 -fit to our quark model results in the high q^2 region and the LCSR predictions by G. Duplancic et al. in the low q^2 region.

f^+ form factor obtained from the fit

The outcome of the fit is

$$f^{+}(0) = 0.297 \pm 0.027,$$

$$f^{+}(q_{\text{max}}^{2}/3) = 0.461 \pm 0.025,$$

$$f^{+}(2 q_{\text{max}}^{2}/3) = 0.902 \pm 0.100,$$

$$f^{+}(q_{\text{max}}^{2}) = 4.738 \pm 0.998$$

f^+ form factor obtained from the fit II

LCSR+ \bar{B}^* -pole Z.-H. Li et al., PRD64, 057901 (2001) LCSR G. Duplancic and B. Melic, PRD78,054015 (2008) RQM R.N. Faustov and V.O. Galkin, PRD87, 094028 (2013) LFQM R.C. Verma,J. Phys. G39, 025005 (2012) PQCD W.-F. Wang and Z.-J. Xiao, PRD86, 114025 (2012). LQCD C.M. Bouchard et al., arXiv:1406.2279

Decay width

	This work	LCSR+ \bar{B}^* -pole	RQM	LFQM	PQCD	LQCD
$\Gamma \left[V_{ub} ^2 \times 10^{-9} \mathrm{MeV} \right]$	$5.47^{+0.54}_{-0.46}$	$4.63\substack{+0.97 \\ -0.88}$	4.50 ± 0.45	2.75 ± 0.24	4.2 ± 2.2	5.1 ± 1.0

A combined result gives

$$\Gamma(\bar{B}_s \to K^+ \ell^- \bar{\nu}_\ell) = (4.94 \pm 0.30) |V_{ub}|^2 \times 10^{-9} \,\mathrm{MeV}$$

Summary

- Solution We have evaluated the $\bar{B}_s \to K^+ l \nu_l$ decay width starting from a constituent quark model.
 - Valence quark contribution gives a poor description of the form factors.
 - The explicit inclusion of a B^* -pole contribution improves significantly the behavior at large q^2 .
- We improve the quark model prediction at low q² using the Omnès representation of the form factors and fitting them to LCSR results in that region.
- We think our procedure improves previous global f⁺ form factor determinations and the final result is comparable to a recent LQCD calculation.
- The form factor thus obtained has been used to evaluate the decay width for which we get $\Gamma(\bar{B}_s \to K^+ \ell^- \bar{\nu}_\ell) = (5.47^{+0.54}_{-0.46}) |V_{ub}|^2 \times 10^{-9} \text{ MeV}.$
- The result for the decay width can be used to obtain $|V_{ub}|$ with a theoretical error of the order of 3%.