\bar{B}_{s} $\epsilon_s\to K$ semileptonic decay from an Omnès improved
constituent quark model constituent quark model

C. Albertus¹, E.Hernández², C. Hidalgo-Duque³ and J. Nieves³

 1 Universidad de Granada, Spain

 2 Universidad de Salamanca, Spain

 3 Instituto de Física Corpuscular (IFIC), Valencia, Spain

C. Albertus, E.Hernández, C. Hidalgo-Duque and J. Nieves, arXiv:1404:1001

Introduction

There is a large discrepancy between the $\left|V_{ub}\right|$ values obtained from exclusive and inclusive reaction analyses.

Any new determination of $\left|V_{ub}\right|$ is relevant.

In particular the $\bar B_s\to K^+\ell^-\bar\nu_\ell$ decay channel is expected to be observed at LHCb and
Bollo Belle.

Introduction II

We attack the problem as in our previous study of the $B\to\pi$ decay [C. Albertus et al., Phys.
Pev, D.72, 033003 (2005)] Rev. D 72, 033002 (2005)].

- We start with ^a simple constituent quark model whose valence quark contribution wesupplement with a \bar{B}^*- pole one. In this way you get a reasonable description of the f^+ dominant form factor at high $q^2.$
- The quark model does not work well at low q^2 where the kaon recoil is largest.
- To correct the behaviour in that region we use an Omnès functional form for the f^+ form factor and make a combined fit to our quark model results at high q^2 and LCSR results at low q^2 .

Form factor decomposition and decay width

 $0^-\rightarrow 0^-$ transition

$$
\langle K^+, \vec{p}_K | \bar{\Psi}_u(0) \gamma^\mu (1 - \gamma_5) \Psi_b(0) | \bar{B}_s, \vec{p}_B \rangle = \left(P^\mu - q^\mu \frac{M_{B_s}^2 - M_K^2}{q^2} \right) f^+(q^2) + q^\mu \frac{M_{B_s}^2 - M_K^2}{q^2} f^0(q^2)
$$

with $P=p_B+p_K, q=p_B-p_K.$

For zero lepton masses, the differential decay width reads

$$
\frac{d\Gamma}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 |\vec{p}_K|^3 |f^+(q^2)|^2
$$

Quark model evaluation of the form factors: valence contribution

For a B_s at rest and taking \vec{q} along the $Z+$ direction

$$
f^+(q^2) = \frac{1}{2M_{B_s}} \left[V^0(|\vec{q}|) + \frac{V^3(|\vec{q}|)}{|\vec{q}|} (E_K - M_{B_s}) \right]
$$

$$
f^0(q^2) = \frac{1}{2M_{B_s}} \left\{ V^0(|\vec{q}|) \frac{q^2 + M_{B_s}^2 - M_K^2}{M_{B_s}^2 - M_K^2} + \frac{V^3(|\vec{q}|)}{|\vec{q}|} \left[E_K \frac{q^2 + M_{B_s}^2 - M_K^2}{M_{B_s}^2 - M_K^2} + M_{B_s} \frac{q^2 - M_{B_s}^2 + M_K^2}{M_{B_s}^2 - M_K^2} \right] \right\}
$$

within the quark model the V^0 and V^3 vector matrix elements are given

$$
V^{0}(|\vec{q}|) = \sqrt{2M_{B_{s}}2E_{K}} \int d^{3}p \frac{1}{4\pi} \Phi_{K}^{*}(|\vec{p}|) \Phi_{B_{s}}(|\vec{p} - \frac{m_{s}}{m_{u} + m_{s}}|\vec{q}|\vec{k}|)
$$

$$
\sqrt{\frac{\hat{E}_{u}\hat{E}_{b}}{4E_{u}E_{b}}} \left(1 + \frac{(-\frac{m_{u}}{m_{u} + m_{s}}|\vec{q}|\vec{k} - \vec{p}) \cdot (\frac{m_{s}}{m_{u} + m_{s}}|\vec{q}|\vec{k} - \vec{p})}{\hat{E}_{u}\hat{E}_{b}}\right)
$$

$$
V^{3}(|\vec{q}|) = \sqrt{2M_{B_{s}}2E_{K}} \int d^{3}p \frac{1}{4\pi} \Phi_{K}^{*}(|\vec{p}|) \Phi_{B_{s}}(|\vec{p} - \frac{m_{s}}{m_{u} + m_{s}}|\vec{q}|\vec{k}|)
$$

$$
\sqrt{\frac{\hat{E}_{u}\hat{E}_{b}}{4E_{u}E_{b}}} \left(\frac{\frac{m_{s}}{m_{u} + m_{s}}|\vec{q}| - p_{z}}{\hat{E}_{b}} + \frac{-\frac{m_{u}}{m_{u} + m_{s}}|\vec{q}| - p_{z}}{\hat{E}_{u}}\right)
$$

where $\widehat{E}_q=E_q+m_q.$ Wave functions are evaluated using the AL1 potential [C. Semay and B. Silvestre-Brac, Z. Phys. C61, ²⁷¹ (1994)]

Quark model evaluation of the form factors: valence contribution II

Valence contribution to f^+ does not contain the B^{\ast} At low q^2 these form factors deviate from the ones calculated in LCSR. * −pole structure at high q^2 .

Quark model evaluation of the form factors:B∗[−]**pole contribution**

$$
f_{B^*}(q^2) = \frac{\sqrt{6}}{(q^2)^{1/4} \pi} \int_0^\infty d|\vec{p}| \Phi_{B^*_u}(|\vec{p}|) |\vec{p}|^2 \sqrt{\frac{\widehat{E}_b \widehat{E}_u}{4E_b E_u}} \left(1 + \frac{|\vec{p}|^2}{3\widehat{E}_b \widehat{E}_u}\right) = f_{B^*} \sqrt{\frac{M_{B^*}}{\sqrt{q^2}}}
$$

For f_{B^*} we get $f_{B^*} = 151\,MeV$ which is small compared to QCDSR and Lattice determinations thar are around 200 MeV.

Quark model evaluation of the form factors:B∗[−]**pole contribution II**

We get $g_{B^*B_sK} = 49.88$ compared to the LCSR prediction $g_{B^*B_sK} = 29$ obtained in
7. If the state ppp 64, 957994 (9994) Z.-H- Li et al., PRD 64, 057901 (2001).

As for the product $g_{B^*B_sK}f_{B^*}$ we find $g_{B^*B_sK}f_{B^*}=7.53\,\rm{GeV}$

Large compared to the LCSR prediction $g_{B^*B_sK}$ $f_{B^*} = 3.57 - 4.19\,\mathrm{GeV}$ by Z.-H- Li et al.

But in agreement with the LQCD plus SU(3) symmetry result $g_{B^*B_sK} f_{B^*} = 7.49 \pm 1.85 \,\textrm{GeV}$ (K.C. Bowler et al., NPB619, 507 (2001). A. Abada et al., JHEP 0402,016 (2004))

We will finally use $g_{B^*B_sK}f_{B^*}=7.49\pm2.38\,\rm{GeV}$

Quark model evaluation of the form factors: Full calculation

LQCD points from C.M. Bouchard et al., arXiv:1310:3207LCSR from G. Duplancic and B. Melic, PRD78,054015 (2008)

${\bf Omn}$ ès representation of the f^+ form factor and fit

Omnès representation is based on analiticity and unitarity. For ^a sufficiently large number of subtractions one can write

$$
f^+(q^2) \approx \frac{1}{M_{B^*}^2 - q^2} \prod_{j=0}^n \left[f^+(q_j^2) \left(M_{B^*}^2 - q_j^2 \right) \right]^{\alpha_j(q^2)}, \quad \alpha_j(q^2) = \prod_{j \neq k=0}^n \frac{q^2 - q_k^2}{q_j^2 - q_k^2}
$$

We follow J. M. Flynn and J. Nieves, PRD76,031302 (2007) and take for $q_{\tilde{i}}^2$ $\frac{2}{j}$ the four different values $0,\,q_{\rm n}^2$ $_{\rm max}^2/3,\,2q_{\rm n}^2$ $_{\rm max}^2/3$ and $q_{\rm n}^2$ max.

We treat $f^+(q^2)$ in the high q^2 region and the LCSR predictions by G. Duplancic et al. in the low q^2 region. $j^2_j)$ as free parameters and make a combined χ^2 ²−fit to our quark model results

f^+ **form factor obtained from the fit**

The outcome of the fit is

$$
f^{+}(0) = 0.297 \pm 0.027,
$$

\n
$$
f^{+}(q_{\text{max}}^2/3) = 0.461 \pm 0.025,
$$

\n
$$
f^{+}(2 q_{\text{max}}^2/3) = 0.902 \pm 0.100,
$$

\n
$$
f^{+}(q_{\text{max}}^2) = 4.738 \pm 0.998
$$

f^+ ⁺ **form factor obtained from the fit II**

LCSR+ \bar{B}^* −pole Z.-H. Li et al., PRD64, 057901 (2001) LCSR G. Duplancic and B. Melic, PRD78,054015 (2008)RQM R.N. Faustov and V.O. Galkin, PRD87, 094028 (2013)LFQM R.C. Verma,J. Phys. G39, 025005 (2012)PQCD W.-F. Wang and Z.-J. Xiao, PRD86, 114025 (2012). LQCD C.M. Bouchard et al., arXiv:1406.2279

Decay width

A combined result gives

$$
\Gamma(\bar{B}_s \to K^+ \ell^- \bar{\nu}_{\ell}) = (4.94 \pm 0.30)|V_{ub}|^2 \times 10^{-9} \,\text{MeV}
$$

Summary

- We have evaluated the $\bar B_s\to K^+l\nu_l$ decay width starting from a constituent
suerk medel quark model.
	- Valence quark contribution gives a poor description of the form factors.
	- The explicit inclusion of a B^*- pole contribution improves significantly the \bullet behavior at large $q^2.$
- We improve the quark model prediction at low q^2 using the Omnès representation of the form factors and fitting them to LCSR results in that region.
- We think our procedure improves previous global f^+ form factor determinations and the final result is comparable to ^a recent LQCDcalculation.
- The form factor thus obtained has been used to evaluate the decay width forwhich we get $\Gamma(\bar{B}_{s}\to K^{+}\ell^{-}\bar{\nu}_{\ell})= (5.47^{+0.54}_{-0.46})|V_{ub}|^{2}\times 10^{-9}\,\text{MeV}.$
- The result for the decay width can be used to obtain $\left|V_{ub}\right|$ with a theoretical error of the order of 3%.