

The NOvA and LBNE long-baseline neutrino oscillation experiments.

XI International Conference on Hyperons, Charm and Beauty Hadrons University of Birmingham, UK, 21-26 July 2014

Matthew Tamsett, University of Sussex

This talk will discuss the present and future US based long-baseline neutrino oscillation experiments in the form of the near-completed NuMI Off-axis electron Neutrino Appearance (NOvA) experiment and the design stage Long-baseline Neutrino Experiment (LBNE).

Contents:

- 1. Introduction
- 2. A very brief introduction to long-baseline neutrino oscillation physics
- 3. NOvA
- 4. LBNE
- 5. Summary & conclusions

Long-baseline neutrino oscillations

For the hypothetical NOvA example shown here. The measured value is shown in black. In this case ($\partial = 3\pi/2$, normal hierarchy) the normal hierarchy would be established at 95% CL.

NOvA is a second generation long-baseline neutrino oscillation experiment situated in the Fermilab NuMI beam line.

300-ton near detector (ND) and a 14-kiloton far detector (FD) separated by 810 km.

Designed to measure the v_e and v_u content of the NuMI beam before and after oscillation.

Make high precision measurements of the neutrino mixing parameters and determining the mass hierarchy.

- Precision θ_{23}
- Precision Δm^2_{32}
- <u>ο</u> θ₁₃
- Mass hierarchy
- $\circ \Theta_{23}$ octant
- o CPV

Nearing completion now!

Upgraded "Neutrinos at the Main Injector" (NuMI) accelerator complex:

- $_{\odot}$ 320 kW \rightarrow 700 kW beam power.
- Nominal NOvA year is 6x10²⁰ protons on target (PoT).
- o 2.4x10²⁰ PoT delivered since August 2013.

Underground 300-ton near detector.

- Functionally identical to far detector.
- o Optimised for NuMI cavern rates: 4x sampling electronics.

14,000-ton *surface* far detector cited at first oscillation maximum.

- Totally active, low *Z*, range stack/calorimeter.
- Liquid scintillator filled PVC.
- 896 alternative X-Y planes.
- o "Largest plastic structure built by man".

Sensitivities

- •For maximal θ_{23} , NOvA's sensitivity to the resolution of the hierarchy reaches 95% CL over 1/3 of ∂_{CP} .
- •For non-maximal θ_{23} NOvA can determine the θ_{23} octant at 95% CL over all ∂_{CP} .
- •These sensitivities improve in combination with T2K and over longer running periods.
- •Will also study: Precision θ_{23} , precision Δm_{32}^2 , θ_{13} , CPV.

Far detector construction

14 kilotons = 28 NOvA Blocks

28 blocks of PVC modules are assembled and installed in place 28 blocks are filled with liquid scintillator 26.84 blocks are outfitted with electronics

July 14th 2014

Far detector performance

- Far detector response at the far end of the detection cell exceeds the technical design requirements.
- Detector exhibits >90% single cell efficiency in both view for hits on muon tracks
 Full muon track reconstruction efficiency > 99%

Reconstruction and cosmic rejection

- Simulation and detector modeling has been extensively verified with cosmic ray data.
 Excellent agreement over full detector volume.
- Cosmic ray rejection efficiency of 20,000,000:1 demonstrated for v_{μ} analysis & 40,000,000:1 for v_{e} !
 - For v_e that means we only expect ~7 background events per nominal year compared to ~14 signal events.

Beam candidate events

Neutrino beam candidate events are being identified in the far detector!
 Here: v_µ CC candidate.

Beam timing

- Beam candidate events demonstrate clear beam timing peak.
- Beautifully clear in the ND!
 - Booster batch structure visible after only a few hours of running with a fraction of the detector!

Both FD & ND are nearly completed. NOvA is ready for physics!

The Long-Baseline Neutrino Experiment Exploring Fundamental Symmetries of the Universe

LBNE

The Long Baseline Neutrino Experiment is detailed design stage future experiment based in the U.S.A.

The flagship HEP experiment of the US programme. DoE CD-1 approved in December 2012.

~500 collaborators from 88 institutes in 8 countries.

Should begin physics operation ~2025, to measure:

- CP violation in the neutrino sector & CP phase measurement
- Neutrino mass hierarchy determination
- Testing the three neutrino flavour paradigm
- Neutrino interaction measurements
- Supernova burst neutrinos & nucleon decay measurements

All in one experiment!

East

Pure v_u >1 MW broadband beam courtesy of Proton Improvement Plan II

East

East

1,300 km optimised baseline

East

≥ 35 kiloton fiducial mass, underground (4,300 m.w.e.), liquid argon TPC far detector.

Total LAr mass ~50 kiloton. Design expect to evolve.

EXISTING PROTON ACCELERATOR

East

Wilson Hall

Detector design

LBNE Liquid Argon TPC based on ICARUS design.

 15m x 23m x 62m x 2! Total liquid argon mass: ~50,000 tons! 120 wrapped APA planes w/ 10 photo paddles per plane.

Detector design

LBNE Liquid Argon TPC based on ICARUS design.

 15m x 23m x 62m x 2! Total liquid argon mass: ~50,000 tons! 120 wrapped APA planes w/ 10 photo paddles per plane.

Liquid argon allows for "bubble chamber"-like reconstruction of neutrino interactions.

• 3D reconstruction, calorimetry, particle identification, excellent mm-scale position resolution.

LBNE physics

parameters in the same experiment.

Sensitivities

- Mass hierarchy is very well determined over most of the ∂_{cp} range
- CPV > 3σ over most of the range & > 5σ for maximal CPV
- Atmospheric neutrinos provide: independent ~ΔX²=4 cross check on MH & ~1σ increased CPV sensitivity if combined with the beam.

Underground physics

- Being deep underground offers many other physics opportunities.
- E.g. supernova burst neutrinos. \circ 10 kpc \rightarrow O(1,000) interactions.
- LAr TPC high efficiency/low background for kaon modes → excellent proton decay sensitivity.

Year

The flagship project for the US. PIP-II motivated by LBNE.

DOE funding commitment for \$867M. LBNE are working with international partners to develop a fully international program hosted in the US.

- Have scope and schedule flexibility in the DoE approvals.
- Moving forward on long-lead conventional facility items.

P5: "Recommendation 13: Form a new international collaboration to design and execute a highly capable Long-Baseline Neutrino Facility (LBNF) hosted by the U.S..."

European strategy: "CERN should develop a neutrino programme to pave the way for a substantial European role in future long-baseline experiments. Europe should explore the possibility of major participation in leading long-baseline neutrino projects in the US and Japan."

LBNF Summit 21st/22nd July at FNAL

• International collaboration with many opportunities for new collaborators

Summary & conclusions

- There is a vibrant programme on long-baseline neutrino physics based in the U.S.
- The NOvA detectors are very nearly complete.
- The NuMI accelerator complex continues ramp to full power.
- *v*'s observed in far detector.
- Demonstrated cosmic rejection 40 million to 1.
- Analysis methods awaiting near detector data for final tuning.
- First oscillation results near end of year.
- Building on substantial investments already made, an international partnership based on LBNE will deliver:
 - A high-power neutrino beam; A high-resolution near detector system; A far detector of ≥10 kt fiducial mass in a cavern that can accommodate a ≥ 35 kt detector.
- A series of meetings with government agencies, (inter)national laboratories, and researchers is being organized to fully internationalize the design, funding, construction and operation of the facility.
- We hope many (more) of you will be part of this exciting program!

