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* SM tests / search for new physics
» direct - new particles in spectra
» indirect: SM provides correlation between processes
experiment + theory to over constrain SM

* hadronic uncertainties very often dominating error budget

* lattice QCD can in principle provide the relevant input and is
becoming increasingly precise in its predictions

* This talk: status of charm /beauty lattice QCD, some examples



The role of lattice QCD in phenomenology

An example:

Lexp. =Verm(WEAK)(EM)(STRONG)

more specifically e.g tree level leptonic B decay

Experimental measurement + theory prediction allows for extraction of CKM MEs



Determination of CKM elements

illustrations from
L. Lellouch’s Les Houches
1y Lecture arXiv:1104.5484



Lattice QCD

Formulate QCD on Euclidean discretised space-time
» provides gauge-invariant regularisation wt. cut-offoc ¢~
» observables in terms of expectation value of discretised path integral

oy ——"= fD U, 1, 9]Oe=SetlU:¥; )]

» Evaluate discretised path integral in finite volume by means of Monte Carlo
simulation



Lattice QCD

Formulate QCD on Euclidean discretised space-time
« provides gauge-invariant regularisation wt. cut-off oc ¢~
* observables in terms of expectation value of discretised path integral

(0]0|0) = %ID[U,%@]OB—S.“[U@,@E]

 Evaluate discretised path integral in finite volume by means of Monte Carlo
simulation

BG/Q Edinburgh

BG/Q Argonn
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State of the art ssmulations

What we can do

* mass degenerate up and down quarks at their physical point
* physical strange and charm quarks
G e C O ED)

* bottom needs special treatment
o cut-off a7 ! < 4GeV
* volume L < 6fm

What comes next

* add isospin breaking

* add electromagnetism
see e.g. Antonin Portelli’s Lattice 2014 plenary




discretisation effects

 charm: am<1 on sufficiently fine lattices
* fully relativistic quarks
* fine lattices needed but very
expensive (in terms of CPU time)
* cut-off a' much larger than 4GeV very hard!

e T |

* bottom: amp~1
— need help from
 HQET, NRQCD
* extended Symanzik improvement program
* extra-/interpolation in 1/my,

lattice-c and -b are affected by different systematic effects than the light quarks

* http: / /www.jicfus.jp /en/promotion/pr/quark-card-dealer/



http://www.jicfus.jp/en/promotion/pr/quark-card-dealer/
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tunneling of topological charge for two sample simulations N
left: coarse lattice a'l~0.1fm, right: fine lattice a-1~0.05fm
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We have evidence for critical slowing down of algorithms beyond a-'~4GeV

— needs to be be considered for reliable estimation of stat. errors (ALPHA NP B845 (2011) 93-119)

— open boundary conditions (Liischer, Schaefer, JHEP 1107 (2011) 36, McGlynn, Mawhinney arXiv:1406.4551)
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Standard, challenging, very challenging processes

(with relevance for meson flavour physics)

* Standard: single incoming and/or outgoing pseudo-scalar states
T D(S), B(S) — QCD — vVacuum
- T, K->, D— K B—>m,..
- Bk,(Bp),Bs
heavy quark quantities still pose considerable technical challenges and
results are less mature

* Challenging: two initial / final hadronic states, one channel
(S W T RGN e A A e
S S e TR T
good theoretical understanding but numerically / technically challenging

* Very challenging - new ideas needed/no clue:
- multi-channel final states (hadronic D, B) (e.g. Hansen, Sharpe Phys. Rev. D 86, 016007 (2012))
- long-distance contributions in e.g. K, D-mixing (Norman’s talk)
- transition MEs with vector final states (e.g. B — K™Il) (Bricefio et al. arXiv:1406.5965)



Standard calculations and results - FLAG

Flavour Lattice Averaging Group
“What’s currently the best lattice value for a particular quantity?”

FLAG'l (Eur. Phys. J. C71 (2011) 1695)

FLA G-Z (http://itpwiki.unibe.ch/flag/, arXiv:1310.8555)

* quantities:
* FLAG-1: my 4, ms, fx/ fr, f{7(0), Bg, SU(2) and SU(3) LECs
- FLAG-2: FLAG-1 + EVes fD(s) ; fB(s) , BB(S) 3 B, D
* summary of results
» evaluation according to FLAG quality criteria (colour coding)
» averages of best values where possible
* detailed summary of properties of individual simulations
» lattice glossary

* data-deadline 30 November 2013


http://itpwiki.unibe.ch/flag/
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weak decays

Leptonic decay

&
2
: G%‘VCQlZTD(S) 2 2 7nl2
(s)
d not only tree-level but also rare, e.g.

Semileptonic decay *B - K™l (Wingate PRL 112, 212003 (2014),

‘ 7 e B, — &ll PRD 89, 094501 (2014);
i S FNAL/MILC, HPQCD)
e B — 7l

At or unusual channels, e.g.
D(pp)

e By — KV (e.g. HPQCD arXiv:1406.2279)
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Ny =2+1+1

Ny =2+1

Ny =2

Leptonic D) meson decays
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- continuum and chiral extrapolation dominant syst. uncertainties
- more activity needed in particular for semi-leptonics (— Lattice 2014 )
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Results
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Results for | V4| and | V]
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0.30

* | Vel from leptonic decays is slightly
larger than from semileptonic decays
* | Vel from leptonic decays is
at tension with CKM-unitarity

by 1.90 (—=HPQCD)
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Ne=24+1+1

Nf =2+1

Leptonic beauty decays
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Ne=24+1+1

Nf =2+1

Leptonic
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Semileptonic beauty decays

Kinematical reach limited in lattice QCD — extract value of V,; from
simultaneous analysis of exp. and lattice data
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Results for | V|
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 confirms ~30 tension between
incl. and excl. semilept. decays

* lept. decay lies in between and
agrees with both at 1.50



N =2+1+1

Ne¢=2+1
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Results for | V|

3
A B—>TV
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i B-ntv (Belle)
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confirms ~30 tension between
incl. and excl. semilept. decays
lept. decay lies in between and
agrees with both at 1.50

lattice can potentially do better
on excl. semileptonics

Belle II will hopefully
improve signal on leptonic
channel



SM and BSM mixing (short distance)

4 \';‘ u,c, t :'/ \"1 f"/ \"" d/ S, b / \
| R0 | O DY
B ?s) W W b ? s) D W i )
\/ 6. \/ \/ d,s,b \/

* in SM W-boson exchange implies V — A structure,
beyond SM other operators possible
* complete set of 4-quark operators:

Ot = [0 = s I 0k = i
Qx = [e*(1—%)*[e?(1—4)l"], Qs = [e%(1—~s)l%|[c’(L + )17,
G5 — [elE=n o (e S o [ P O S e AR ] [ G |

» for B both SM and BSM on the lattice
for D large distance contributions for SM, so for now only BSM



s )

mixing (short distance)

H0
* Bs) — By

ETM Phys.Rev. D90 (2014) 014502
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Summary

» ... all that covers only a small fraction of the activity in beauty and charm on
the lattice (see links to Lattice 2014 plenary talks on next slide):
* quark masses
* baryons
* spectroscopy
e structure

* Some take away messages:
e we are now simulating physical QCD parameters (—light quarks)
e there is a large group of quantities which we can pre-/post-dict with an
excellent control over systematic effects (— FLAG)
* for some of these quantities precision is now such that isospin and EM can
no longer be ignored - we are working on it
* lattice bottom quarks still need help from effective theory

(HQET, NRQCD, etc.) and therefore more lattice results with
different uses of effective theory desirable



c- and b-quark masses

hadron spectroscopy

electro-weak matrix elements
* leptonic
* semi-leptonic (tree, rare)
* mixing

hadron structure

isospin breaking

Ol
+eat Lattice 2014

plenary speaker
Francesco Sanfilippo
Sasa Prelovsek

Chris Bouchard

Martha Constantinou
Antonin Portelli


https://indico.bnl.gov/materialDisplay.py?contribId=86&sessionId=0&materialId=slides&confId=736
https://indico.bnl.gov/materialDisplay.py?contribId=87&sessionId=0&materialId=slides&confId=736
https://indico.bnl.gov/materialDisplay.py?contribId=74&sessionId=0&materialId=slides&confId=736
https://indico.bnl.gov/materialDisplay.py?contribId=246&sessionId=4&materialId=slides&confId=736
https://indico.bnl.gov/materialDisplay.py?contribId=85&sessionId=0&materialId=slides&confId=736

The research leading to these results has received funding from the European Research
Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)
ERC grant agreement No 279757







Charm and bottom masses

e

bOHE  EHAO

HPQCD 2014 (prel), N=2+1+1, Corr. Moments
ETM 2014, Nr-2+l+l. Meson masses & dec.
ETM 2014, N =2+1+1, Baryons

Alpha 2013 (prel), N =2, Wilson O(a) NP impr.
HPQCD 2010, N=2+1. Corr. Moments

ETMC 2010 (Latt proc), Nr—-z, Corr. Moments
ETM 2010, N =2, Meson masses & dec.
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ETM 2013, N =2, Ratio method
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HPQCD 2010, N=2+1, Corr.moments
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Plots taken from F. Sanfilippo’s Lattice 2014 plenary

4.5




Results for | Vea| and | Vs |

Leptonic decay:

From Experiment Stone and Rosner in PDG:

fp|Vea| = 46.40(1.98)MeV, fp_|Ves| = 253.1(5.3)MeV

FLAG’s analysis:

|Vcd‘
|Ved]

0.2218(35)(95),
0.2189(83)(94),

|Ves|
|Ves|

1.018(11)(21),
1.021(25)(21),

(leptonic decays, Ny =2 + 1)
(leptonic decays, Ny = 2)
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Leptonic decay:
From Experiment Stone and Rosner in PDG:

fp|Vea| = 46.40(1.98)MeV, fp_ |Ves| = 253.1(5.3)MeV
FLAG’s analysis:

[n = (52 2 885 (950 1.018(11)(21), (leptonicdecays, Ny =2+ 1)
[Vea| = 0.2189(83)(94), |Ves|] = 1.021(25)(21), (leptonicdecays, Ns = 2)

Semileptonic decay:

From Experiment from HFAG
£7(0)[Vea| = 0.146(3), f27(0)[Ves| = 0.728(5)
FLAG’s analysis:

|Vea| = 0.2192(95)(45), |Ves| = 0.9746(248)(67), (semileptonic decays, Ny =2+ 1)

FLAG-average:
|Vea| = 0.2191(83), |Ves| = 0.996(21), (our average, Ny = 2 + 1)



(Juarkonia

Main problems:
* project on the correct state (large set of bilinear operators)
 get a signal (—GEVP, need large statistics,
most existing data for very heavy pions)
e deal with plethora of Wick contractions
e scattering in finite volume is hard (Lischer Nucl.Phys. B354 (1991) 531-578)

What can be done

e precision: below threshold (low-lying charmonium)
* near or above threshold: single hadron approximation
* beyond: hard but interesting

Lattice 2014: Hadron spectroscopy Sasa Prelovsek



https://indico.bnl.gov/materialDisplay.py?contribId=87&sessionId=0&materialId=slides&confId=736

Some spectra from LOQCD vs. experiment
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Results for | Vi |

* leptonic decays: experimental input for B—tv, from Belle and
Babar — there is a tension:

1.79(48) 0.96(26)
3.87(52)(9) 5.28(71)(12)
FLLAG combines this to | V1 =4.18(52)(9)x10-3
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* leptonic decays: experimental input for B—tv, from Belle and
Babar — there is a tension:

1.79(48) 0.96(26)
3.87(52)(9) 5.28(71)(12)
FLLAG combines this to | V1 =4.18(52)(9)x10-3

* semileptonic decays:
simultaneous analysis of lattice, Belle and BaBar results
(here N=2+1 lattice input)
BaBar Belle

3.37(21) 3.47(22)

no FLAG average due to unknown exp. correlations



Lattice - systematic uncertainties

In practice need to control a number of sources of systematic uncertainties:

» discretisation errors (lattice spacing a)
effects differ between heavy and light quarks, so currently FLAG's criteria
differ from quantity to quantity

* finite volume errors (box size L)

* quark mass extrapolation
until very recently mostly unphysical heavy light-quark masses

* renormalisation, running
* heavy quark treatment

Generally: FLAG considers quantities for which lattice QCD predictions have
reached a certain level of maturity



Heavy quark treatment:
RHQ (tl O(a) improved)
NRQCD (tl matched O(1/m)
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Heavy quark treatment:
RHQ (tl O(a) improved)
NRQCD (tl matched O(1/m)

improved through O(a?))
HQOET (including 1/m and leading

cutoff effects at O(a?))
standard lattice actions
(O(a)-improved)

Continuum extrapolation:
>3 lattice spacings
& 0f e Orin, 2> 2
& D(amin) < 2%
& d(amin) <1

two or more lattice spacings
Ko, fars = 4

& D(amin) < 10%
SeFolfas =2

B otherwise

D(a) relative difference between fintest lattice data and continuum limit

6(a) deviation of fintest lattice data relative to the statistical and
sysetmatic uncertainty of the calculation



