Non-lattice QCD for Heavy Flavour Decays

Alexander Khodjamirian

XI International Conference on Hyperons, Charm and Beauty, July 21-26, 2014, Birmingham, UK

Outline

- Impressive amount of data (LHC, *B*-factories,...) available on exclusive heavy-to-light flavour transitions: $b \rightarrow u\ell\nu_{\ell}$, $b \rightarrow s\ell^{+}\ell^{-}$,
- determination of CKM parameters, coeffs of H_{eff}, constraints on new physics due to non-SM short-distance effects
- all this is not possible without precise knowledge of hadronic matrix elements=
 ={hadronic decay constants, form factors,...}
- continuum QCD (non-lattice) calculations of heavy-light transition matrix elements:
 some results, accuracy, perspectives

Form factors in quark-flavour physics

• a well studied example:

$${\cal B}
ightarrow \pi \ell
u_\ell$$
 (the simplest $b
ightarrow u \ell
u_\ell$ transition)

 hadronic transition matrix element determined by form factors:

$$\langle \pi^+(p)|\bar{u}\gamma_\mu b|B(p+q)\rangle = f^+_{B\pi}(q^2)\Big[...\Big]_\mu + f^0_{B\pi}(q^2)\Big[...\Big]_\mu$$

• a standard source of |V_{ub}| determination [BaBar,Belle]

$$\left(\frac{1}{\tau_B}\right)\frac{dBR(\bar{B}^0\to\pi^+l^-\nu)}{dq^2} = \frac{G_F^2|V_{ub}|^2}{24\pi^3}p_\pi^3|f_{B\pi}^+(q^2)|^2 + O(m_I^2)$$

$$0 < q^2 < (m_B - m_\pi)^2 \sim 26 \; {
m GeV}^2$$
 ,

form factors have to be calculated in QCD

QCD dynamics of the form factors

- factorization theorems in $m_b \to \infty$, (originally for $B \to \pi\pi$) [M. Beneke, G. Buchalla, M. Neubert and C. T. Sachrajda (1999)]
- for $B \to \pi$ form factor at large recoil: $(E_{\pi} \sim m_B/2, q^2 \to 0)$ [M. Beneke, Th. Feldmann (2001)]

$$f_{B\pi}(q^2) \sim \alpha_s(\mu) \int d\omega du \; \phi_B^+(\omega,\mu) T_h(q^2,\omega,u,\mu) \varphi_\pi(u,\mu) + f_{B\pi}^{soft}(q^2)$$

$$\mu = \sqrt{m_b \Lambda}$$

Toolbox of continuum (non-lattice) QCD calculations

- universal tools: ← (also used in the lattice QCD)
 - analyticity & unitarity, hadronic dispersion relations,
 - perturbative expansion in QCD
- dedicated tools:
 - QCD light-cone sum rules (LCSR)
 - two-point (SVZ) QCD sum rules
- LCSR applicable at large hadronic recoil: $f_{B\pi}(q^2 \ll m_b^2)$ including "soft" contributions lattice QCD: only small recoil (large q^2) region accessible

Light-Cone Sum Rules (LCSR) for $B \rightarrow \pi$

- the correlation function an artifitially "designed" amplitude
- external currents with $(p+q)^2$, $q^2 \ll m_b^2 \Rightarrow b$ -quark virtual,
- factorization: $\mu \sim \sqrt{m_b \chi}$, $\Lambda_{QCD} \ll \chi \ll m_b$

$$F(q^2,(p\!+\!q)^2) = \sum_{t=2,3,4,...} \int du \; T^{(t)}(q^2,(p\!+\!q)^2,m_b^2,\alpha_s,u,\mu) \, \varphi_\pi^{(t)}(u,\mu)$$

hard scattering amplitudes ⊗ pion light-cone DA's

The OPE result

current accuracy

$$\begin{split} F(q^2,(p+q)^2) &= \left(T_0^{(2)} + (\alpha_s/\pi)T_1^{(2)} + (\alpha_s/\pi)^2T_2^{(2)}\right) \otimes \varphi_{\pi}^{(2)} \\ &+ \frac{\mu_{\pi}}{m_b} \left(T_0^{(3)} + (\alpha_s/\pi)T_1^{(3)}\right) \otimes \varphi_{\pi}^{(3)} \\ &+ \frac{\delta_{\pi}^2}{m_b \chi} T^{(4)} \otimes \varphi_{\pi}^{(4)} + \dots \end{split}$$

- LO twist 2,3,4 qq̄ and q̄qG terms: [V.Belyaev, A.K., R.Rückl (1993); V.Braun, V.Belyaev, A.K., R.Rückl (1996)]
- -NLO $O(\alpha_s)$ twist 2, (collinear factorization) [A.K., R.Rückl, S.Weinzierl, O. Yakovlev (1997); E.Bagan, P.Ball, V.Braun (1997);]
- -NLO $O(\alpha_s)$ twist 3 (coll.factorization for asympt. DA)

 [P. Ball, R. Zwicky (2001); G.Duplancic, A.K., B.Melic, Th.Mannel, N.Offen (2007)]
- -part of NNLO $O(\alpha_s^2 \beta_0)$ twist 2 [A. Bharucha (2012)]

Calculating the form factor from LCSR

{correlator OPE} = {sum over intermediate B states}

- varying flavours and J^{PC} yields LCSR's for $B \to K, \eta, D \to \pi, K$, etc.
- LCSR includes "soft" and "hard" contributions to the form factors
- finite m_b , assessment of $1/m_b$ terms, HQET-limit

How accurate are LCSR's

• the "raw" sum rule: OPE = dispersion relation:

$$\begin{split} [F((p+q)^2,q^2)]_{OPE} &= \frac{m_B^2 f_B f_{B\pi}^+(q^2)}{m_B^2 - (p+q)^2} + \int\limits_{s_0^B}^{\infty} ds \frac{[\text{Im} F(s,q^2)]_{OPE}}{s - (p+q)^2} \\ &\uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad \uparrow \\ \hline \overline{m}_{b}, \alpha_s, \varphi_{\pi}^{(t)}(u), \text{t=2,3,4;} \end{split} \quad \boxed{\text{QCD SR for } f_B} \quad \boxed{\text{quark-hadron duality}} \end{split}$$

- input for OPE: parameters, truncation level, variable scales
- use of 2-point QCD sum rules
- "systematic error" of the quark-hadron duality approximation (suppressed with Borel transformation, controlled by the m_B calculation)
- nailing down the pion DA's (Gegenbauer moments, normalization coeffs.): two-point sum rules, LCSR's for the pion form factors: $\gamma^* \gamma \to \pi$, $\gamma^* \pi \to \pi$ vs exp. (CLEO, BaBar, Belle, Jlab)

$B_{(s)}$ and $D_{(s)}$ decay constants from QCD sum rules

[P.Gelhausen, AK, A.A.Pivovarov, D.Rosenthal, 1305.5432 hep/ph]

Decay constant	Lattice QCD [ref.]	this work	
f _B [MeV]	196.9 \pm 9.1 [1] 186 \pm 4 [2]	207 ⁺¹⁷ ₋₉	
f _{Bs} [MeV]	242.0 ± 10.0 [1] 224 ± 5 [2]	242 ⁺¹⁷ ₋₁₂	
f_{B_S}/f_B	1.229± 0.026 [1] 1.205± 0.007 [2]	1.17 ^{+0.04} _{-0.03}	
f_D [MeV]	212.6(0.4)($^{+1.0}_{-1.2}$)[3] 213 \pm 4 [2]	201+12	
$f_{D_s}[MeV]$	$249.0(0.3)(^{+1.1}_{-1.5}) [3]$ $248.0 \pm 2.5 [2]$	238+13 -23	
f_{D_S}/f_D	1.1712(10)($^{+29}_{-32}$) [3] 1.164 \pm 0.018 [2]	1.15 ^{+0.04} _{-0.05}	

[1], [3]-Fermilab/MILC, [2]-HPQCD

LCSR for $D \rightarrow \pi$, K form factors

AK, Ch. Klein, Th. Mannel, N.Offen (2009)

- important cross-check of the LCSR method
- $b \rightarrow c$ in the correlation function (finite quark masses!)

FIG. 6: The $D \to \pi$ form factor $f_+^{D \to \pi}(0)$ from this work an comparisons with other determinations [12, [13, 23–25].

Results for $B \to \pi$ form factor and extraction of $|V_{ub}|$

- ullet 0 < q^2 < 12 GeV 2 LCSR [AK, T.Mannel, N.Offen, Y-M.Wang (2011)]
 - integrate over the region of validity, taking $q_{max}^2 = 12 \text{ GeV}^2$

$$\Delta\zeta\left(0,q_{\text{max}}^{2}\right) \equiv \frac{G_{F}^{2}}{24\pi^{3}} \int\limits_{0}^{q_{\text{max}}^{2}} dq^{2}p_{\pi}^{3}|f_{B\pi}^{+}(q^{2})|^{2} = \frac{1}{|V_{\text{ub}}|^{2}\tau_{B^{0}}} \int\limits_{0}^{q_{\text{max}}^{2}} dq^{2}\frac{d\mathcal{B}(B\to\pi\ell\nu_{\ell})}{dq^{2}} \,,$$

from [Belle Collab 1306.2781 [hep-ex]]

TABLE XII: Values of the CKM matrix element $|V_{ub}|$ based on rates of exclusive $\bar{B} \to X_u \ell^- \bar{\nu}_\ell$ decays and theoretical predictions of form factors within various q^2 ranges. The first uncertainty is statistical, the second is experimental systematic and the third is theoretical. The theoretical uncertainty for the ISGW2 model is not available.

X_u	Theory	q^2	$N^{ m fit}$	N^{MC}	$\Delta \mathcal{B}$	$\Delta \zeta$	$ V_{ub} $
		${\rm GeV}/c^2$			10^{-4}	$\rm ps^{-1}$	10^{-3}
	LCSR [33]	< 12	119.6 ± 16.2	116.5	0.423 ± 0.057	$4.59_{-0.85}^{+1.00}$	$3.35 \pm 0.23 \pm 0.09^{+0.36}_{-0.31}$
π^0	LCSR [34]	< 16	168.2 ± 18.9	153.5	0.588 ± 0.066	$5.44^{+1.43}_{-1.43}$	$3.63 \pm 0.20 \pm 0.10^{+0.60}_{-0.40}$
А	HPQCD [35]	> 16	58.6 ± 10.5	57.6	0.196 ± 0.035	$2.02^{+0.55}_{-0.55}$	$3.44 \pm 0.31 \pm 0.09^{+0.59}_{-0.39}$
	FNAL [36]					$2.21^{+0.47}_{-0.42}$	$3.29 \pm 0.30 \pm 0.09^{+0.37}_{-0.30}$
	LCSR [33]	< 12	247.2 ± 18.9	233.1	0.808 ± 0.062	$4.59^{+1.00}_{-0.85}$	$3.40 \pm 0.13 \pm 0.09^{+0.37}_{-0.32}$
π^+	LCSR [34]	< 16	324.2 ± 22.6	305.1	1.057 ± 0.074	$5.44^{+1.43}_{-1.43}$	$3.58 \pm 0.12 \pm 0.09^{+0.59}_{-0.39}$
и.	$\mathrm{HPQCD}\ [35]$	> 16	141.3 ± 16.0	116.1	0.445 ± 0.050	0.00	$3.81 \pm 0.22 \pm 0.10^{+0.66}_{-0.43}$
	FNAL [36]		141.0 1 10.0 1	110.1	0.440 ± 0.000	$2.21^{+0.47}_{-0.42}$	$3.64 \pm 0.21 \pm 0.09^{+0.40}_{-0.33}$
	T COD To d			100.0	4 404 1 0 004	40-13/	0 80 1 0 44 1 0 00±0 5/

Accessing large q² with LCSR input

- $q^2 \rightarrow z(q^2, t_0)$, z-series parameterization \Rightarrow extrapolation: BCL-version [Bourrely, Caprini, Lellouch, (2008)]
- unitarity bounds for the z-transformed form factor [L.Lellouch (1996)], [Th.Mannel, B.Postler (1998)]

form factor $f_{B\pi}^+(q^2)$: BCL extrapolation (violet) unitarity bounds (magenta), lattice QCD points: HPQCD (orange) and Fermilab-MILC (blue), correlations shape-normalization

S.Imsong, AK, Th. Mannel, D. van Dyk, work in progress

Other applications of LCSR

modification of the method: LCSR's with B-meson DA's

• a different correlation function: B -meson is on-shell, π interpolated with a current [A.K., T. Mannel, N.Offen,(2005), F.De Fazio, Th. Feldmann and T. Hurth, (2005)]

- B → γ_ℓν_ℓ a key process to determine the B-meson DA recent update in SCET [M.Beneke, J.Rohrwild (2011)], soft form factor from LCSR [V.Braun, AK(2013)]
- heavy baryon transition form factors see the talk by Yu-Ming Wang at this conference

Using continuum QCD methods for hadronic matrix elements not accessible in the current lattice studies

Hadronic input in $B \to K\ell^+\ell^-$

$$A(B o K\ell^+\ell^-) = rac{G_F}{\sqrt{2}} rac{lpha_{em}}{\pi} V_{tb} V_{ts}^* igg| ar{\ell} \gamma_\mu \ell \, p^\mu igg(C_9 f_{BK}^+(q^2) igg)$$

$$\left. + \frac{2(m_b + m_s)}{m_B + m_K} C_7^{\textit{eff}} f_{BK}^T(\textbf{q}^2) + \sum_{i=1,2,...,6,8} C_i \, \mathcal{H}_i^{(BK)}(\textbf{q}^2) \right) + \bar{\ell} \gamma_\mu \gamma_5 \ell \, p^\mu C_{10} f_{BK}^+(\textbf{q}^2) \right]$$

- $B \to K$ form factors: simply $\pi \to K$ in the correlation function, $O(m_s)$ effects included
- additional nonlocal (nonfactorizable) matrix elements:

$$\mathcal{H}_i^{(BK)}(q^2) \sim \langle K(p)|i\int d^4x \ e^{iqx} \ T\{j_{em}^{
ho}(x), O_i(0)\}|B(p+q)
angle$$
 $j_{em}^{
ho} = \sum\limits_{q=1}^{\infty} Q_q ar{q} \gamma^{
ho} q \ , \quad O_i \ \text{-quark-gluon effective operators}$

- QCD factorization approach M.Beneke, Th.Feldmann, D.Seidel (2001)
- including soft-gluon nonfactrizable effects and employing hadronic disperison relations to access positive q^2

[A.K., Th. Mannel, A. Pivovarov, Yu-M. Wang, (2010)];

4 0 3 4 60 3 4 5 3 4 5 5 5 5 [A.K., Th. Mannel and Yu-M. Wang, (2013)] Non-lattice QCD for Heavy Flavour Decays

The nonlocal matrix elements

LO, factorizable and weak annihilation

NLO, nonfactorizable ...

soft (low virtuality) gluons, nonfactorizable

calculated at $q^2 < 0$ and matched to hadronic dispersion relation in the virtual photon channel including $V = \rho, \omega, \phi, ..., J/\psi, \psi(2S)$

$dBR(B \rightarrow K\mu^+\mu^-)/dq^2$ and bins

solid (dotted) lines - central input, default (alternative) parametrization for the dispersion integrals.

long-dashed line -the width calculated without nonlocal hadronic effects.

The green (yellow) shaded area indicates the uncertainties including (excluding) the one from the $B \to K$ FF normalization.

$[q_{min}^2, q_{max}^2]$	Belle	CDF	LHCb	LHCb	this work
[0.05, 2.0]	$0.81^{+0.18}_{-0.16}\pm0.05$	0.33 ± 0.10 ± 0.02	0.21 +0.27 -0.23	$0.56 \pm 0.05 \pm 0.03$	0.71 ^{+0.22} _{-0.08}
[2.0, 4.3]	$0.46^{+0.14}_{-0.12}\pm0.03$	$0.77 \pm 0.14 \pm 0.05$	$0.07^{+0.25}_{-0.21}$	$0.57 \pm 0.05 \pm 0.02$	0.80 ^{+0.27} _{-0.11}
[4.3, 8.68]	$1.00^{+0.19}_{-0.08}\pm0.06$	$1.05 \pm 0.17 \pm 0.07$	1.2 ± 0.3	$1.00 \pm 0.07 \pm 0.04$	1.39+0.53
[1.0, 6.0]	$1.36^{+0.23}_{-0.21}\pm0.08$	$1.29 \pm 0.18 \pm 0.08$	$0.65^{+0.45}_{-0.35}$	$1.21 \pm 0.09 \pm 0.07$	1.76+0.60

Accessing $B \rightarrow V$ form factors

- $B \to \rho \ell \nu_{\ell} \Rightarrow |V_{ub}|$; $B \to K^* \ell^+ \ell^-$ used for angular analysis, search for NP
- LCSR's for $B \rightarrow V$ form factors [P. Ball, V.Braun (1998), P.Ball, R. Zwicky (2004,...)]
- $\Gamma_V = 0$ approximation ("quenched") \Rightarrow additional uncertainty
- the problem is more general: $\rho(770)$ ($K^*(890)$) are strongly coupled to the P-wave of 2π ($K\pi$) state:
 - a simple constraint on the inv. mass of 2π or $K\pi$ may not be precise enough
 - scalar resonances in 2π ($K\pi$): a complete angular analysis is needed

$B \rightarrow 2P$ form factors

• disentangling $B \to \pi \pi \ell \nu_{\ell}$ in terms of $B \to \pi \pi$ form factors, including the partial expansion and resonance contributions;

S. Faller, T. Feldmann, A. Khodjamirian, T. Mannel and D. van Dyk, 1310.6660

more work in this direction is on the way:

- the region: $q^2 \ll m_b^2$ (b-quark virtual) $k^2 \ll m_b^2$ (2-pion system produced near the LC)
- new nonperturbative input: timelike pion form factors

Conclusions

- LCSR's :
 - predict heavy-light form factors in the large recoil region
 - provide "soft" form factors and power suppressed terms for the QCD factorization theorems
 - accuracy at 10-15 % level;
 quark-hadron duality an important issue
 - applications to nonlocal hadronic matrix elements in $b \to s\ell\ell$ exclusive transitions
- experiment can help to improve the accuracy of DA's:
 - $\pi \gamma^* \gamma$, $B \to \gamma \ell \nu_{\ell}$;
 - radial excitations of D and B mesons
- near future tasks:
 - $B \rightarrow 2\pi, K\pi$ form factors
 - nonlocal hadronic matrix elements for $B \to K\pi(K^*)\ell\ell$

