

A Two-Stage Approach in the Search for μ -e Conversion with COMET

Andrew Edmonds (UCL) on behalf of the COMET collaboration

Charged Lepton Flavour Violation

- Know that lepton flavour isn't conserved in neutrino oscillations
- CLFV has not been observed
- SM prediction of CLFV is O(10⁻⁵⁴)
 - Therefore, if observed at any higher rate, it will be clear evidence of physics BSM

Standard Model Feynman diagram of the process $\mu \to e \gamma$

Current Limits

• COMET limits in relation to historical limits

µ-e Conversion

 COMET will be searching for the charged lepton flavour violating process

$$\mu^- + N(Z, A) \rightarrow e^- + N(Z, A)$$

in AI with a single event sensitivity (S.E.S) of $3x10^{-17}$ (Current limit: S.E.S(μ ⁻Au \rightarrow e⁻Au) O(10⁻¹³)) Signal is e

Signal is electron of E = 105 MeV

SINDRUM results of search for μ -e conversion in gold

Starting in 2019 S.E.S = 3×10^{-17}

COMET (Phase-II)

Starting in 2016 S.E.S = 3×10^{-15}

COMET (Phase-I)

Beamline Construction

- Funding from KEK for new beam lines
 - Will be completed in spring 2015

Beamline Construction

- Funding from KEK for new beam lines
 - Will be completed in spring 2015

Facility Construction

• Work under way on the facility construction

Proton Beam

- Energy: 8 GeV
- Power: 3.2 kW / 56 kW (Phase-I/Phase-II)
- Pulsed
 - Allows us to measure in a timing window and reduce beam-related backgrounds

Plot of COMET Beam Structure

Proton Beam Acceleration

• aiming for S.E.S of $2x10^{-14}$ in 2015

Proton Beam Extinction

• New single bunch kick injection method successfully demonstrated at 8 GeV in May 2014 at J-PARC

Background Estimates

 For Phase-I, we expect 0.03 background events per signal event for BR 3x10⁻¹⁵ and 30 days running

Background	Expected Number of Events	
Decay In Orbit (DIO)	0.01	Detector
Radiative Pion Capture (RPC)	0.01*	Accelerator
All others	0.01	

* Assuming proton beam extinction factor of 3×10^{-11}

COMET Detectors

Cylindrical Drift Chamber

Cylindrical Drift Chamber

- Requirements
 - Gas gain: > 10⁵
 - Position resolution (x, y): < 150 μ m
 - Position resolution (z): < 2mm
 - Reduce multiple scattering for good momentum resolution
- Cosmic ray tests performed on prototype at Osaka and KEK

Cylindrical Drift Chamber

But proton emission from muon capture greatly increases the detector rates

Source	Optimisation	Rate / wite
DIO electrons	Minimum radius 55cm	270 Hz
Protons after muon capture*	Inner wall (CFRP) thickness 0.5mm	40kHz

* Assume 15% per capture

Current simulation shows a resolution will be 200 keV/c is achievable

Final Phase-II Detector

- The final Phase-II detector will consist of a straw tube tracker and an electromagnetic calorimeter
- Phase-I will develop prototypes of these

Straw Tube Tracker

Proposing to use straws developed at JINR similar to NA62

Prototype for detector R&D has been built with NA62 straws at KEK

014.03.30

Final Phase-I detector will have 5 super-layers each with 4 layers of straws

Electromagnetic Calorimeter

- Requirements
 - Resolution: <5% at 105 MeV/c
 - Trigger Rate: <5 kHz
 - Spatial resolution: <1.5 cm
 - Response: <100 ns
- Two candidate crystals
 - GSO and LYSO
- Beam test at Tohoku University (March 2014)

Timeline

	JFY	2013	2014	2015	2016	2017	2018	2019	2020	2021
COMET	construction									
Phase-I	data taking									
COMET	construction									
Phase-II	data taking									
CC S. (fc with 3,2	MET Phase 2016 ~ E.S. ~ 3x10 or 1~3 mont 2 kW protor	e-I : 15 hs 1 bean	n) p	Mu2e 201 E.S: 2.5 for ~3 y with 8 oroton b	e : 9 5x10 ⁻¹⁷ /ears <w eam)</w 	(with	COME 2 S.E.S (for 2 56 kV	T Pha 2019~ 5. ~ 3x 2x10 ⁷ V prot	ase-II :	am)

Conclusion

- COMET will be searching for $\mu\text{-}e$ conversion in Al in two stages
 - Phase-I (2016): S.E.S = 3x10⁻¹⁵
 - Phase-II (2020): S.E.S = $3x10^{-17}$
- Construction has begun

Thanks for Listening

Any Questions?

Back Up

Proton Beam Extinction

• Plan to use a novel kick injection method such that residual protons don't enter MR

Pion Production Target

- For Phase-I will use a graphite target
 - 4cm diameter, 60 cm length
 - Radiation cooling
- For Phase-II will move to a tungsten target
 - Greater pion yield
 - Requires helium cooling

Muon Transport

Stopping Target

- Currently 17 AI disks but also looked at double cone
- Radius: 10 cm, Thickness: 200 µm, Length: 80 cm

Stopping Target

Stopping Target	Stopping Efficiency
Disks	0.66
Cone	0.42

Stopping Target	# Events (p > 104.4 MeV)
Disks	1.14
Cone	1.45

Electromagnetic Calorimeter

- Beam test at Tohoku University (March 2014)
 - Used both GSO and LYSO crystals
 - 7x7 crystal array
 - Measured the resolution at 65, 85, 105, 125 and 145 MeV/c

Pion Capture Solenoid

• Current design of the pion capture system

Neutron Backgrounds

- Regulations
 - < 25 µSv/h at 1F
 - < 11 mSv/h in underground soil
- Performed calculation with PHITS and FLUKA for Pion Capture Solenoid
 - MARS to be done

DAQ & Trigger

• The basic unit will be a 4x4 crystal array with a single trigger board which can scale up to the full ECAL

Left: Basic Unit

Below: Full scale with modular quadrants

For 1316 crystals

PRISM/PRIME

- To get down to 10⁻¹⁸ and beyond PRISM/PRIME propose to use an FFAG ring
- This gives the muon beam a small momentum width which allows the use of one target disk

Background Estimation

- Here are the estimates for our backgrounds for Phase-I
 - Two main backgrounds are DIO and RPC

Background	estimated events
Muon decay in orbit	0.01
Radiative muon capture	< 0.001
Neutron emission after muon capture	< 0.001
Charged particle emission after muon capture	< 0.001
Radiative pion capture	0.0096^{*}
Beam electrons	
Muon decay in flight	$< 0.00048^{*}$
Pion decay in flight	
Neutron induced background	$\sim 0^*$
Delayed radiative pion capture	0.002
Anti-proton induced backgrounds	0.007
Electrons from cosmic ray muons	< 0.0002
Total	0.03

