

Angela Papa
Paul Scherrer Institute
on behalf of the MEG and the Mu3e collaboration

Muon cLFV search in Europe: the $\mu^+ \to e^+ \, \gamma$ and the $\mu^+ \to e^+ \, e^-$ decays

Flavour Changing Neutral Currents (FCNC)

- At the tree level
 - flavour is violated in Charged Current interactions (mediated by W[±])
 - flavour is conserved in all Neutral Current interactions (mediated by g, Z^0 and γ)

the are no vertices of the type i.e.:

Flavour Changing Neutral Currents (FCNC)

- At the tree level
 - flavour is violated in Charged Current interactions (mediated by W[±])
 - flavour is conserved in all Neutral Current interactions (mediated by g, Z^0 and γ)

the are no vertices of the type i.e.:

- At the quantum level (quantum loops)
 - FCNC are induced by charged current loop effects, due to mixing among fermion generations
 - e.g. $K_L^0 \rightarrow \mu \mu$ in the quark section

Flavour Changing Neutral Currents (FCNC)

- At the tree level
 - flavour is violated in Charged Current interactions (mediated by W[±])
 - flavour is conserved in all Neutral Current interactions (mediated by g, Z^0 and γ)

the are no vertices of the type i.e.:

- At the quantum level (quantum loops)
 - FCNC are induced by charged current loop effects, due to mixing among fermion generations
 - e.g. $K_L^0 \rightarrow \mu \mu$ in the quark section
 - what about lepton section ?

Lepton Flavour Violation of Charged Leptons (cLFV)

- Lepton flavour is preserved into the SM ("accidental" symmetry)
 - not related to the theory gauge
 - naturally violated in SM extentions

Lepton Flavour Violation of Charged Leptons (cLFV)

- Lepton flavour is preserved into the SM ("accidental" symmetry)
 - not related to the theory gauge
 - naturally violated in SM extentions

LFV of neutral leptons confirmed -neutrino oscillations-

LFV of charged leptons not yet observed

The $\mu^+ \rightarrow e^+ \gamma$ decay as an example

• Taking into account of neutrino oscillations

too small to access experimentally

The $\mu^+ \rightarrow e^+ \gamma$ decay as an example

• Taking into account of neutrino oscillations

too small to access experimentally

 BSM theories such as SU(5) SUSY-GUT and SO(10) SUSY-GUT models predict measureble LFV decay BR

SU(5) SUSY-GUT or SO(10) SUSY-GUT

$$\Gamma(l_1 \to l_2 \gamma) = \frac{\alpha G_F^2 m_{l_1}^5}{2048\pi^4} (|D_R|^2 + |D_L|^2)$$

$$D_R = D_L \approx \frac{1}{G_F \Lambda^2}$$

$$10^{-14} < B(\mu^+ \to e^+ \gamma) < 10^{-11}$$

The $\mu^+ \rightarrow e^+ \gamma$ decay as an example

 BSM theorie such as SU(5) SUSY-GUT and SO(10) SUSY-GUT models predict measureble LFV decay BR

Null result will turn out in a precise test of established model and will ruled out speculative ones

cLFV signature will be a clear evidence of New Physics

The role of low energy physics in the LHC era

Rare decay searches as a complementary way to unveil BSM physics and explore much higher energy scale w.r.t. what can be done at the high-energy frontiers

Direct/indirect production of BSM particles

- Real BSM particles produced in the final state
- Energy frontier (LHC)

- Virtual BSM particles produced in loops
- Precision and intensity frontier

Effective field theory approach

$$\mathcal{L}_{eff} = \mathcal{L}_{\mathcal{SM}} + \sum_{d>4} rac{c_n^{(d)}}{\Lambda^{d-4}} \mathcal{O}^{(d)}$$

 Leff is in terms of inverse powers of heavy scale

Favorite place: the Paul Scherrer Institute

- The most intense continuous positive (surface)muon beam at low momentum (28 MeV/c)
 - up to few x I 0⁸ muon/s

monitoring methods

The MEG experimental set-up

and frequency signal digitization

• The MEG experiment aims to search for $\mu^+ \to e^+ \gamma$ with a sensitivity of ~10⁻¹³ (best upper limit BR($\mu^+ \to e^+ \gamma$) \leq 1.2 x 10⁻¹¹ @90 C.L. by MEGA experiment)

12

	Resolutions (σ)	
Gamma Energy (%)	1.7(depth>2cm), 2.4	
Gamma Timing (psec)	67	
Gamma Position (mm)	5(u,v), 6(w)	
Gamma Efficiency (%)	63	
Positron Momentum (KeV)	305 (core = 85%)	
Positron Timing (psec)	108	
Positron Angles (mrad)	7.5 (Ф), 10.6 (θ)	
Positron Efficiency (%)	40	
Gamma-Positron Timing (psec)	127	
Muon decay point (mm)	1.9 (z), 1.3 (y)	

	μ stopped	sensitivity
2009+10	1.75x10 ¹⁴	1.3x10 ⁻¹²
2011	1.85x10 ¹⁴	1.1x10 ⁻¹²
2009+10+11	3.60x10 ¹⁴	7.7x10 ⁻¹³

Physics Analysis Overview and Event Selection

- Five observables (E_g, E_e, t_{eg}, θ_{eg} , φ_{eg}) to characterize $\mu \rightarrow e\gamma$ events
- Event selection: Trigger selection (E_g > 45 MeV , $|\Delta t_{eg}|$ < 10 ns, $|\Delta \varphi|$ < 7.5°) + at least 1 reconstructed track
- Blind Analysis (Sideband, Blind box)
- Maximum likelihood to extract N_{sig}

CL frequentistic approch

Summary of Results

(**) 90% C.L. upper limit averaged over pseudoexperiments based on null-signal hypothesis with expected rates of RMD and BG

	Best fit	Upper Limit (90% C.L.)	Sensitivity **
2009+10	0.09x10 ⁻¹²	1.3x10 ⁻¹²	1.3x10 ⁻¹²
2011	-0.35x10 ⁻¹²	6.7x10 ⁻¹³	1.1x10 ⁻¹²
2009+10+11	-0.06x10 ⁻¹²	5.7x10 ⁻¹³	7.7x10 ⁻¹³

$$B(\mu^+ \rightarrow e^+ \gamma)$$
 < 5.7x10⁻¹³ (all combined data) *

x4 more stringent than the previous upper limit

 $(B(\mu^+ \rightarrow e^+ \gamma) < 2.4 \times 10^{-12} - MEG 2009-10)$

x20 more stringent than the MEGA experiment result

 $(B(\mu^+ \rightarrow e^+ \gamma) < 1.2 \times 10^{-11} - MEGA 2001)$

Future Prospects: MEGII

 An upgrade of MEG, aiming at a sensitivity improvement of one order of magnitude (down to 5 x 10⁻¹⁴) approved by PSI and funding agencies is ongoing

Future Prospects: MEGII

High granularity
Less material
High Trasparency DC
towards the TC counter

```
\sigma(E_e) [keV] ~ 150 (325); \sigma(\theta_e, \Phi_e) [mrad] ~ 5 (7-11); \epsilon(\text{det}) [%] ~ 80 (40);
```


High granularity Less material High Trasparency DC towards the TC counter $\sigma(E_e) \text{ [keV]} \sim 150 \text{ (325)}; \\ \sigma(\theta_e, \Phi_e) \text{ [mrad]} \sim 5 \text{ (7-11)}; \\ \epsilon(\text{det)} \text{ [\%]} \sim 80 \text{ (40)}; \\ \sigma(t_e) \text{ [ps]} \sim 30 \text{ (70)};$

High granularity Less material High Trasparency DC towards the TC counter

 $\sigma(E_e)$ [keV] ~ 150 (325);

 $\sigma(\theta_e, \Phi_e)$ [mrad] ~ 5 (7-11);

 ϵ (det) [%] ~ 80 (40);

 $\sigma(t_e)$ [ps] ~ 30 (70);

High energy and position resolutions

High pile-up rejction capability High acceptance and detection efficiency

 $\sigma(E_Y)/E_Y [\%] \sim 1.3 (w<2cm)$

 $(2.6); \sim 1.0 \text{ (w>2cm)} (1.7)$

 $\sigma(x_Y)$ [mm] ~ 2 (w<2cm) (5);

High granularity Less material **High Trasparency DC** towards the TC counter

 $\sigma(E_e)$ [keV] ~ 150 (325);

 $\sigma(\theta_e, \Phi_e)$ [mrad] ~ 5 (7-11);

 ϵ (det) [%] ~ 80 (40);

 $\sigma(t_e)$ [ps] ~ 30 (70);

resolutions

High pile-up rejction capability **High acceptance and detection** efficiency

 $\sigma(E_y)/E_y$ [%] ~ 1.3 (w<2cm)

 $(2.6); \sim 1.0 \text{ (w>2cm)} (1.7)$

 $\sigma(x_y)$ [mm] ~ 2 (w<2cm) (5);

Where we will be

The Mu3e experiment aims to search for µ⁺ → e⁺ e⁺ e⁻ with a sensitivity of ~10⁻¹⁶ (current best upper limit BR(µ⁺ → e⁺ e⁺ e⁻) ≤ 1. x 10⁻¹² @90 C.L. by the SINDRUM experiment)

$$\mathcal{L}_{cLFV} = \frac{m_{\mu}}{(k+1)\Lambda^2} \overline{\mu}_R \sigma_{\mu\nu} e_L F^{\mu\nu} + \frac{k}{(k+1)\Lambda^2} \overline{\mu}_R \gamma_{\mu} e_L \overline{f} \gamma^{\mu} f$$

The Mu3e experiment aims to search for μ⁺ → e⁺ e⁺ e⁻ with a sensitivity of ~10⁻¹⁶ (current best upper limit BR(μ⁺ → e⁺ e⁺ e⁻) ≤ 1. x 10⁻¹² @90
 C.L. by the SINDRUM experiment)

Case 1: dominant dipole coupling $(k \rightarrow 0)$

$$\mathcal{L}_{cLFV} = \frac{m_{\mu}}{(k+1)\Lambda^2} \overline{\mu}_R \sigma_{\mu\nu} e_L F^{\mu\nu} + \frac{k}{(k+1)\Lambda^2} \overline{\mu}_R \gamma_{\mu} e_L \overline{f} \gamma^{\mu} f$$

 $\mu^+ \rightarrow e^+ \gamma$ most sensistive channel!

The Mu3e experiment aims to search for µ⁺ → e⁺ e⁺ e⁻ with a sensitivity of ~10⁻¹⁶ (current best upper limit BR(µ⁺ → e⁺ e⁺ e⁻) ≤ 1. x 10⁻¹² @90
 C.L. by the SINDRUM experiment)

<u>Case 2</u>: tree level interaction (k > 10)

$$\mathcal{L}_{cLFV} = rac{m_{\mu}}{(k+1)\Lambda^2} \overline{\mu}_R \sigma_{\mu
u} e_L F^{\mu
u} + rac{k}{(k+1)\Lambda^2} \overline{\mu}_R \gamma_{\mu} e_L \overline{f} \gamma^{\mu} f$$

$$\frac{\mathsf{BR}(\mu^+ \to e^+ \, e^+ \, e^-)}{\mathsf{BR}(\mu^+ \to e^+ \, \gamma)} >> 1$$

tree level interaction accessible only via $\mu^+ \rightarrow e^+ e^- e^-$!

cLFV search: complementry approch

$\underbrace{\mu^+ \rightarrow e^+ e^+ e^-}_{\text{Oo}}$

The Mu3e experiment

- The $\mu^+ \rightarrow e^+ e^+ e^-$ signature
 - 3 charged particle in the final state
 - no neutral particle in the fonal state allows for higher detector performances
- The $\mu^+ \rightarrow e^+ e^+ e^-$ main backgrounds
 - $\mu^+ \rightarrow e^+ e^- \nu \nu$
 - combinatorial $\mu^+ \rightarrow e^+ \ \nu \ \nu, \ \mu^+ \rightarrow e^+ \ \nu \ \nu, \ e^+ \ e^-$

- High intensity beam (up to 10⁹ muon/s!)
- Excellent momentun resolution
- Good vertex resolution
- Good timing resolution
- Low material badget

 $\underbrace{\mu^+ \rightarrow e^+ e^+ e^-}_{\text{Oo}}$

- Pixel dimension: 80 x 80 um²
- Thinning to 50 um
- The sensor and read-out are integrated on the same device

 $\underbrace{\mu^+ \rightarrow e^+ e^+ e^-}_{\text{Oo}}$

- Pixel dimension: 80 x 80 um²
- Thinning to 50 um
- The sensor and read-out are integrated on the same device
- Momentum resolution < 0.5 MeV/c over a large phase space
- Vertex resolution < 200 um

- Multi-layers of 250 um fiber
- Timing resolution < 1ns

 \rightarrow e⁺ e⁺ e⁻

Ó0.

- Multi-layers of 250 um fiber
- Timing resolution < 1ns
- Tile detector
- Timing resolution < 100 ps

Summary

- Lepton flavour violation is presently one of the most exciting branch of particle physics
- The MEG experiment @PSI was design to reach a sensitivity of ~ few x 10^{-13} on the $\mu^+ \rightarrow e^+ \gamma$ decay. It has set the most stringent upper limit on the BR($\mu^+ \rightarrow e^+ \gamma$) < 5.7 x 10^{-13} (based on the 2009-2011 sample)
- The analysis of the full data sample is ongoing. It will be doubled including the collected statistics of the 2012-2013 sample and a new result will be delivered soon!
- An upgrade of the MEG detector started and is ongoing aiming at a sensitivity of ~ few x 10⁻¹⁴
- The Mu3e experiment @PSI aiming at search for the μ⁺ → e⁺ e⁻ decay with a sensitivity of ~ few x 10⁻¹⁶ started as well its preparation, complementing the muon cLVF search pursued in Europe

Likelihood Fit (2009-2011)

Confidence Interval

 Confidence interval calculated with Feldman-Cousins method + profile likelihood ratio ordering

Consistent with null-signal hypotesis