

BEACHE

BIRMINGHAM

B_c⁺ physics at LHCb

Xuhao Yuan @ Tsinghua University on behalf of the LHCb collaboration

2014-07-24

XI INTERNATIONAL CONFERENCE ON HYPERONS, CHARM AND BEAUTY HADRONS UNIVERSITY OF BIRMINGHAM, UK, 21-26 JULY 2014

New

New

Outline

>Introduction

Selected <u>recent</u> B_c^+ results at LHCb

- ✓ Observation of $B_c^+ \to J/\psi p \overline{p} \pi^+$ LHCb-PAPER-2014-039
- $\checkmark \quad \mathcal{B}(B_c^+ \to J/\psi\pi^+)/\mathcal{B}(B_c^+ \to J/\psi\mu^+\nu_{\mu}) \text{ arXiv:1407.2126}$
- ✓ Lifetime measurement using $B_c^+ \rightarrow J/\psi \mu^+ \nu_{\mu} X$ EPJC74,2839
- \checkmark Evidence of $B_c^+ \rightarrow J/\psi 3\pi^+ 2\pi^-$ JHEP1405,148

> Summary

B_c^+ meson

The only meson composed of different heavy flavor quarks: c & b

Rich spectroscopy

- > LHCb: $M(B_c^+(1S)) = 6276.3 \pm 1.4 \pm 0.4 \text{ MeV}/c^2$
- > ATLAS: $M(B_c^+(2S)) = 6842 \pm 4 \pm 5 \text{MeV}/c^2$

A wide range of decay modes

> Tevatron: $J/\psi \pi^+$, $J/\psi \mu^+ \nu_{\mu}$

LHCb: $J/\psi \pi^+ \pi^- \pi^+, \psi(2S)\pi^+, J/\psi K^+, J/\psi D_S^{(*)+}, J/\psi K^+ K^- \pi^+, B_S^0 \pi^+...$

More studies on B_c^+ physics are needed

- \blacktriangleright Large uncertainty in $\tau(B_c^+)$
- Many other B_c^+ decays not observed, especially annihilation decays \succ
- No absolute branching ratio measurement

Yuan XH, Tsinghua University

3

Phys.Rev.D87,112012

arXiv:1407.1032

Evelina Bouhova-Thacker's talk

New result of LHCb

First observation of $B_c^+ o J/\psi p \overline{p} \pi^+$

LHCb-PAPER-2014-039

- \succ Baryonic decay of *b* hadron important
 - To understand baryon production mechanism
 - To search for new baryons and tetra-quarks
 - Special behavior observed in baryonic $B_{u,d}$ decays, not understood yet
- This analysis presents
 - **D** First observation of $B_c^+ \rightarrow J/\psi p \bar{p} \pi^+$
 - **D** Precise measurement of B_c^+ mass

Observation of $B_c^+ \rightarrow J/\psi p \overline{p} \pi^+$

- Pre-selection + multivariate selection based on boosted decision tree (BDT)
 - $\checkmark\,$ Proton identification optimised

First observation

 $\mathcal{B}(B_c^+ \to J/\psi p \overline{p} \pi^+)/\mathcal{B}(B_c^+ \to J/\psi \pi^+)$

- Most efficiencies determined from simulation
- Proton identification efficiency estimated from data sample

Branching fraction measured as

$$\frac{\mathcal{B}(B_{c}^{+} \to J/\psi p\bar{p}\pi^{+})}{\mathcal{B}(B_{c}^{+} \to J/\psi\pi^{+})} = \frac{N(B_{c}^{+} \to J/\psi p\bar{p}\pi^{+})}{N(B_{c}^{+} \to J/\psi\pi^{+})} \times \frac{\epsilon(B_{c}^{+} \to J/\psi\pi^{+})}{\epsilon(B_{c}^{+} \to J/\psi p\bar{p}\pi^{+})}$$

$$= 0.143^{+0.039}_{-0.034}(\text{stat}) \pm 0.013(\text{syst})$$
LHCb-PAPER-2014-039

Consistent with B^0 baryonic decay

 \succ

$$\frac{\mathcal{B}(B_c^+ \to J/\psi p \bar{p} \pi^+)}{\mathcal{B}(B_c^+ \to J/\psi \pi^+)} \approx \frac{\mathcal{B}(B^0 \to D^{*-} p \bar{p} \pi^+)}{\mathcal{B}(B^0 \to D^{*-} \pi^+)} = 0.17 \pm 0.02$$

Mass of B_c^+ meson

> Low Q- value provides a precise measurement of B_c^+ mass

New result of LHCb

The measurement of $\mathcal{B}(B_c^+ \to J/\psi \pi^+)/\mathcal{B}(B_c^+ \to J/\psi \mu^+ \nu_{\mu})$

arXiv:1407.2126

$$\mathcal{B}(B_c^+ \to J/\psi\pi^+)/\mathcal{B}(B_c^+ \to J/\psi\mu^+\nu_\mu)$$

No experimental determination of the relative size of these decays

$$R \equiv \frac{\mathcal{B}(B_c^+ \to J/\psi\pi^+)}{\mathcal{B}(B_c^+ \to J/\psi\mu^+\nu_{\mu})}$$

- Testing theoretical predictions
 - ✓ Large spread among different calculations: 0.050-0.091

PRD49,3399, PRD61,034012, PRD68,094020, PRD73,054024, PRD89,017501...

➢ Providing comparison between B_c^+ cross sections measured at Tevatron (using $B_c^+ → J/\psi \mu^+ \nu_{\mu}$)
See Jain's talk

 $\frac{\sigma(B_c^+)\mathcal{B}(B_c^+ \to J/\psi\mu^+\nu_{\mu})}{\sigma(B^+)\mathcal{B}(B^+ \to J/\psi K^+)} = \left(29.5 \pm 4.0(\text{stat})^{+10.7}_{-7.6}(\text{syst}) \pm 3.6(p_T \text{ spec})\right)\%$ and at LHCb (using $B_c^+ \to J/\psi\pi^+$)

 $\frac{\sigma(B_c^+)\mathcal{B}(B_c^+ \to J/\psi\pi^+)}{\sigma(B^+)\mathcal{B}(B^+ \to J/\psi K^+)} = (0.68 \pm 0.10(\text{stat}) \pm 0.03(\text{syst}) \pm 0.05(\tau_{B_c^+}))\%$

Analysis strategy

A 2500 NeV 2500

a 2000

Candidates

Excluded

Included

— **Β**_c⁺→ J/ψμ⁺ν_"

 $- \mathbf{B}_{u.d.s} \rightarrow \mathbf{J}/\psi \mathbf{X}$

 $- \mathbf{B}_{c}^{+} \rightarrow \mathbf{J}/\psi \mu^{+} \nu_{\mu} \mathbf{X}$

..... 10xB⁺_c→ J/ψμ⁺ν_µX

LHCb

Main challenge: undetected neutrino \geq $m(I/\psi\mu^+) > 5.3 \text{ GeV}/c^2$ required → $B_{u,d,s} \rightarrow J/\psi X$ suppressed

Signal-to-background likelihood-

- Signal yields determined from fitting to invariant mass distributions

arXiv:1407.2126

Measurement of B_c^+ lifetime with $B_c^+ \rightarrow J/\psi \mu^+ \nu_{\mu} X$

EPJC74,2839

 B_c^+ lifetime

> Large spread in B_c^+ lifetime prediction: 0.3 – 0.7 ps

PRD53,4991, PLB452,129, NPB585,353, PRD64,014003

- ► Large uncertainty in previous measurements □ D0 & CDF measured with $B_c^+ \rightarrow J/\psi\pi^+$ and $B_c^+ \rightarrow J/\psi l^+ \nu$ □ PDG2012: $\tau(B_c^+) = 0.452 \pm 0.033$ ps
 - **D** Dominates systematics in most of B_c^+ analyses

Precise measurement of B_c⁺ lifetime required
Powerful test for B_c⁺ dynamics
Improving measurements of B_c⁺ physics

l/psi

daughters

 μ^+

Bachelor muon

Missing

enerav

Decay Vertex

/Primary

Vertex

- > Compared to B_c^+ hadronic decay
 - Output Advantage
 - High statistics:
 - ~ 20x larger than $B_c^+ \rightarrow J/\psi \pi^+$
 - □ Clear 3µ signature

▶ 2D fits to $(M_{J/\psi\mu}, t_{ps})$

- ✓ Pseudo decay time $t_{ps} = M_{J/\psi\mu} \times (\vec{p} \cdot \vec{L})/|\vec{p}|^2$
- $\checkmark\,$ Correction factor & resolution from simulation
- $\checkmark\,$ Bkg shapes from simulation or data sample
- ✓ Decay model: little effects observed

😕 But

Partial reconstruction Model dependent

Result of T(B_c⁺)

Evidence of $B_c^+ \rightarrow J/\psi 3\pi^+ 2\pi^-$

JHEP1405,148

2014/07/24

Evidence of $B_c^+ \rightarrow J/\psi 3\pi^+ 2\pi^-$

- Powerful tests
 - ✓ Form factors of $B_c^+ \to J/\psi W^+$ transition
 - Spectral functions for virtual W⁺ boson into light hadrons

> 1 fb⁻¹ (7 TeV) + 2 fb⁻¹ (8 TeV) data used

$$N_{\text{sig}} = 32 \pm 8 (4.5 \sigma)$$

 $\frac{\mathcal{B}(B_c^+ \to J/\psi 3\pi^+ 2\pi^-)}{\mathcal{B}(B_c^+ \to J/\psi \pi^+)} = 1.74 \pm 0.44 \pm 0.24$

Consistent with theoretical predictions (0.95 ~ 1.1)

PRD86,074024

In agreement with B^0 and B^+ meson decays:

$$\frac{\mathcal{B}(B^0 \to D^{*-} 3\pi^+ 2\pi^-)}{\mathcal{B}(B^0 \to D^{*-} \pi^+)} = 1.70 \pm 0.34$$
$$\frac{\mathcal{B}(B^+ \to \overline{D}^{*0} 3\pi^+ 2\pi^-)}{\mathcal{B}(B^+ \to \overline{D}^{*0} \pi^+)} = 1.10 \pm 0.24$$

2014/07/24

Summary

- > LHCb provide good opportunities for B_c^+ physics
- > Many B_c^+ new decays observed and properties measured
- 1. First observation of $B_c^+ \rightarrow J/\psi p \bar{p} \pi^+$
- LHCb-PAPER-2014-039
- ✓ Firstly observed baryonic decay of B_c^+
- ✓ The most precise B_c^+ mass measurement
- 2. First measurement of $\mathcal{B}(B_c^+ \to J/\psi\pi^+)/\mathcal{B}(B_c^+ \to J/\psi\mu^+\nu_{\mu})$ arXiv:1407.2126
 - Consistent with theoretical predictions
- 3. Measurement of $\tau(B_c^+)$ with $B_c^+ \to J/\psi \mu^+ \nu_{\mu} X$ EPJC74,2839
 - ✓ Most precise measurement
- 4. Evidence of $B_c^+ \rightarrow J/\psi 3\pi^+ 2\pi^-$ JHEP1405,148

More studies still ongoing

Thanks for your attentions

Backup

2014/07/24

LHCb detector

daughters

μ⁺

Bachelor muon

Missina

energy

Decay Vertex ...+

B⁺

- > A single-arm forward spectrometer covering $2 < \eta < 5$
- > Focusing on b/c physics
 - ✓ Separating PV and SV of *B* decays: B meson flying distance ~ cm VELO: $\sigma_{PV,x/y}$ ~10 µm, $\sigma_{PV,x/y}$ ~60 µm
 - ✓ Reconstructing $J/ψ → μ^+μ^-$ effectively:
 ✓ Reconstructing $J/ψ → μ^+μ^-$ effectively:
 Good muon identification: ε(μ → μ) ~ 95 %, π μ misID ~ 5 % Trigger system: 90 % efficiency

LHCb data taking

LHCb Integrated Luminosity pp collisions 2010-2012

Analyses mostly based on 2011, 2012 data

2014/07/24

Baryon-antibaryon effective mass peaks at very low values Similar results observed in $B^0 \rightarrow p\overline{\Lambda}\pi^-$, $B^+ \rightarrow p\overline{p}\pi^+$, $B^0 \rightarrow p\overline{p}K^0$, $B^+ \rightarrow p\overline{p}K^{*+}$

PRL90,201802, PRL92,131801

Optimisation of BDT and PID

Punzi function

$$f_{Punzi}(t,d) = \frac{\epsilon_{sig}(t,d)}{a/2 + \sqrt{B(t,d)}}$$

✓ t, d : BDT & PID selection ✓ ϵ_{sig} : efficiency of signals

✓ B(t, d) : BKG events left with t & d

✓ a = 3: 3-sigma significance search

2014/07/24

Decay mode

B_c^+ mass determination

> Fitted B_c^+ mass need to be calibrated:

- Scale on the track momentum
- The scale α makes $B^+ \rightarrow J/\psi(\mu^+\mu^-)K^+$ mass to PDG 2012
- Variation of scales studied with a variety of decays

 \checkmark 3 × 10⁻⁴

✓ Propagated to uncertainty of B_c^+ mass: ±0.030 MeV/ c^2 Yuan XH, Tsinghua University

2014/07/24

Signals for $B_c^+ \rightarrow J/\psi \mu^+ \nu_\mu$

Feeddown: $\psi(2S)\mu^+\nu_{\mu}, \chi_{cJ}\mu^+\nu_{\mu}, J/\psi\tau^+\nu_{\tau}$

Analysis strategy

2D data-model m(J/ $\psi\mu+)\oplus t_{ps}$ to enhance sig/bkg separation

- > $B_c^+ \rightarrow J/\psi \mu^+ v_\mu$ kinematics dependent on form factor
- Three different decay models used in simulation
 Only small differences observed
- □ Feed-down effects:
 - ✓ To be small after selection
 - ✓ Considered as a source of systematics
- Partial reconstruction (missing neutrino)
- $\hfill\square$ Cannot reconstruct $B_c{}^+$ proper decay time t
- □ Using pseudo decay time t_{ps} instead: $t_{ps} \equiv$ decay time in J/ $\psi\mu^+$ rest frame
- Correction between t_{ps} and t (k= t_{ps}/t) obtained from simulation

2D fits to m(J/ $\psi\mu$) and t_{ps}

- Decay time signal model: determined from simulation study
- > J/ψ + hadron misidentified as a μ
- Fake J/ψ + real μ
- Combinatorial: J/ψ + μ not coming from a Bc+
 - Prompt bkg: decays close to PV
 - □ Detached bkg from simulation of $H_b \rightarrow J/\psi X$, $H_b \equiv B_d$, B_u , B_s , Λ_b

All background sources modelled on data (except for detached combinatorial)

