

# Kaon Physics: Theory Overview

### Antonio Pich IFIC, Univ. Valencia - CSIC



#### **1** Theoretical Framework.

Short and long-distance physics

**②** Leptonic and Semileptonic Decays.

Lepton Universality. CKM determinations

**8** Nonleptonic Decays.

Octet Enhancement.  $\varepsilon'/\varepsilon$ 

**4** Rare and Radiative Decays.

 $K \to \pi \nu \bar{\nu}, \ K \to \pi \ell^+ \ell^-, \ K \to \pi \gamma \gamma \ldots$ 

## 1. Theoretical Framework

Sensitivity to Short-Distance Scales:



**Charm mass prediction** Top quark **GIM** cancellation **New Physics ?** 

• Long-Distance Physics:



**Chiral Dynamics** 

#### • Multi-Scale Problem:

 $\log (M/\mu)$  (OPE),  $\log (\mu/m_{\pi})$  ( $\chi$ PT)

Kaon Physics

| Energy Scale                | Fields                                                                                  | Effective Theory                                                              |
|-----------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| M <sub>W</sub>              | $W, Z, \gamma, g$<br>$	au, \mu, e,  u_i$<br>t, b, c, s, d, u                            | Standard Model                                                                |
| $\stackrel{<}{_{\sim}} m_c$ | $\begin{array}{c} & OPE \\ \hline \gamma, g \ ; \ \mu, e, \nu_i \\ s, d, u \end{array}$ | $\mathcal{L}_{	ext{QCD}}^{(n_f=3)}, \ \mathcal{L}_{	ext{eff}}^{\Delta S=1,2}$ |
| $M_K$                       | $\gamma ; \mu, e,  u_i \ \pi, K, \eta$                                                  | $\chi$ PT                                                                     |

Kaon Physics





$$\mathcal{L}_{\text{eff}}^{\Delta S=1} = -\frac{G_F}{\sqrt{2}} V_{ud} V_{us}^* \sum_i C_i(\mu) Q_i(\mu)$$

•  $q > \mu$ :  $C_i(\mu) = z_i(\mu) - y_i(\mu) \left( V_{td} V_{ts}^* / V_{ud} V_{us}^* \right)$  $O(\alpha_s^n t^n)$ ,  $O(\alpha_s^{n+1} t^n)$   $[t \equiv \log(M/m)]$  Munich / Rome

•  $q < \mu$  :  $\langle \pi \pi | Q_i(\mu) | K \rangle$  ? Physics does not depend on  $\mu$ 

Kaon Physics

## CHIRAL PERTURBATION THEORY ( $\chi$ PT)

- Expansion in powers of  $p^2/\Lambda_{\chi}^2$ :  $\mathcal{A} = \sum_n \mathcal{A}^{(n)} (\Lambda_{\chi} \sim 4\pi F_{\pi} \sim 1.2 \text{ GeV})$
- Amplitude structure fixed by chiral symmetry

 $SU(3)_L \otimes SU(3)_R \, \rightarrow \, SU(3)_V$ 

- Short-distance dynamics encoded in Low-Energy Couplings
- $O(p^2)$   $\chi PT$ : Goldstone interactions  $(\pi, K, \eta)$   $\Phi \equiv \frac{1}{\sqrt{2}} \vec{\lambda} \vec{\varphi}$

$$\mathcal{L}_{2}^{\Delta S=1} = G_{8} F^{4} \operatorname{Tr}(\lambda L_{\mu} L^{\mu}) + G_{27} F^{4} \left( L_{\mu 23} L_{11}^{\mu} + \frac{2}{3} L_{\mu 21} L_{13}^{\mu} \right)$$
$$G_{R} \equiv -\frac{G_{F}}{\sqrt{2}} V_{ud} V_{us}^{*} g_{R} \quad ; \quad L_{\mu} = -iU^{\dagger} D_{\mu} U \quad ; \quad \lambda \equiv \frac{1}{2} \lambda_{6-i7} \quad ; \quad U \equiv \exp\left\{ i\sqrt{2} \Phi/F \right\}$$

- Loop corrections ( $\chi$ PT logarithms) unambiguously predicted
- LECs can be determined at  $N_C \rightarrow \infty$  (matching)
- $O(p^2)$  LECs ( $G_8$ ,  $G_{27}$ ) can be phenomenologically determined

Kaon Physics

### $O\left[p^4, \left(m_u-m_d\right)p^2, e^2p^0, e^2p^2\right] ~~\chi \text{PT}$



• Nonleptonic weak Lagrangian:  $O(G_F p^4)$ 

$$\mathcal{L}_{\text{weak}}^{(4)} = \sum_{i} G_8 N_i F^2 O_i^8 + \sum_{i} G_{27} D_i F^2 O_i^{27} + \text{h.c.}$$

• Electroweak Lagrangian:  $O(G_F e^2 p^{0,2})$ 

 $\mathcal{L}_{\rm EW} \; = \; e^2 F^6 G_8 \, g_{ew} \, {\rm Tr} (\lambda U^\dagger \mathcal{Q} U) \; + \; e^2 \sum_i \; G_8 \, Z_i \, F^4 \; O_i^{EW} \; + \; {\rm h.c.} \label{eq:Lew}$ 

•  $\mathcal{O}(e^2 p^{0,2})$  Electromagnetic +  $\mathcal{O}(p^4)$  Strong:  $Z, K_i, L_i$ 

Kaon Physics

## 2. (Semi) Leptonic Decays

Lepton Universality:

$$R_{e/\mu}^{(P)} \equiv \frac{\Gamma(P^- \to e^- \bar{\nu}_e)}{\Gamma(P^- \to \mu^- \bar{\nu}_\mu)}$$

$$\frac{\pi}{\underline{a}} \underbrace{g_{e}}_{\overline{v}_{\mu}}^{g_{\mu}}$$

$$\begin{split} \left. R_{e/\mu}^{(\pi)} \right|_{\exp} &= (1.230 \pm 0.004) \cdot 10^{-4} \\ \left. R_{e/\mu}^{(K)} \right|_{\exp} &= (2.488 \pm 0.010) \cdot 10^{-5} \end{split}$$





 $K \to \pi \,\ell \,\nu_\ell$ 

#### $|V_{us}\,f_+(0)|\,=\,0.2163\pm 0.0005$

Flavianet Kaon WG, arXiv:1005.2323 [hep-ph]

$$\langle \pi^{-} | \bar{s} \gamma_{\mu} u | K^{0} \rangle = (p_{\pi} + p_{K})_{\mu} f_{+}(t) + (p_{K} - p_{\pi})_{\mu} f_{-}(t)$$



 $K \to \pi \,\ell \,\nu_\ell$ 

#### $|V_{us}\,f_+(0)|\,=\,0.2163\pm 0.0005$

Flavianet Kaon WG, arXiv:1005.2323 [hep-ph]

$$\langle \pi^{-} | \bar{s} \gamma_{\mu} u | K^{0} \rangle = (p_{\pi} + p_{K})_{\mu} f_{+}(t) + (p_{K} - p_{\pi})_{\mu} f_{-}(t)$$





 $K \to \pi \ell \nu_{\ell}$ 

#### $|V_{us}\,f_+(0)|\,=\,0.2163\pm 0.0005$

Flavianet Kaon WG, arXiv:1005.2323 [hep-ph]

$$\langle \pi^{-} | \bar{s} \gamma_{\mu} u | K^{0} \rangle = (p_{\pi} + p_{K})_{\mu} f_{+}(t) + (p_{K} - p_{\pi})_{\mu} f_{-}(t)$$



$$f_+(0) = 0.9661(32)$$
  
 $\downarrow V_{us}| = 0.2239(9)$ 

$$f_+(0) = 1 + f_2 + f_4 + \cdots$$

Large  $\mathcal{O}(p^6) \chi PT$  correction

#### Kaon Physics



 $\Gamma(K^+ \rightarrow \mu^+ \nu_\mu) / \Gamma(\pi^+ \rightarrow \mu^+ \nu_\mu)$ :





 $\Gamma(K^+ \rightarrow \mu^+ \nu_\mu) / \Gamma(\pi^+ \rightarrow \mu^+ \nu_\mu)$ :







$$\begin{split} |V_{ud}| &= 0.97425 \pm 0.00022 \qquad, \qquad |V_{us}| = 0.2245 \pm 0.0007 \\ \\ \Delta_{\rm CKM} &\equiv |V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 - 1 = -0.0004 \pm 0.0007 \end{split}$$

## 3. Nonleptonic Decays

• Octet Enhancement:

 $\frac{A(K \to \pi\pi)_{I=0}}{A(K \to \pi\pi)_{I=2}} \approx 22$ 

- Short-distance: gluonic corrections, penguins
- Long-distance: large  $\chi$ PT corrections (FSI)
- Ongoing Lattice efforts

## 3. Nonleptonic Decays

• Octet Enhancement:

$$\frac{A(K \to \pi\pi)_{I=0}}{A(K \to \pi\pi)_{I=2}} \approx 22$$

- Short-distance: gluonic corrections, penguins
- Long-distance: large  $\chi$ PT corrections (FSI)
- Ongoing Lattice efforts

## • Direct CP Violation:

$$\eta_{ij} \equiv \frac{A(K_L \rightarrow \pi^i \pi^j)}{A(K_S \rightarrow \pi^i \pi^j)}$$

 $\operatorname{Re}\left(\epsilon'/\epsilon\right) = rac{1}{3}\left(1 - \left|rac{\eta_{00}}{\eta_{+-}}\right|
ight) = (16.8 \pm 1.4) \cdot 10^{-4}$  NA31, E731, NA48, KTeV

$$\operatorname{Re}(\epsilon'/\epsilon)_{_{\mathrm{SM}}} = (19 \pm 2^{+9}_{-6} \pm 6) \cdot 10^{-4}$$
 Pallante-Pich-Scime

Kaon Physics

### Dynamical understanding of the $\Delta I = 1/2$ rule

AP - E. de Rafael, PL B374 (1996) 186

$$\mathcal{L}_{\rm eff} = -\frac{G_F}{\sqrt{2}} F^4 \left[ a \ {\rm Tr}(Q_L^{(-)}L_{\mu}) \, {\rm Tr}(Q_L^{(+)}L^{\mu}) + b \ {\rm Tr}(Q_L^{(-)}L_{\mu}Q_L^{(+)}L^{\mu}) + c \ {\rm Tr}(Q_L^{(-)}Q_L^{(+)}L_{\mu}L^{\mu}) \right]$$



$$Q_{L}^{(+)} = \begin{pmatrix} 0 & V_{\rm nd} & V_{\rm ns} \\ 0 & 0 & 0 \end{pmatrix} ; \quad Q_{L}^{(-)} = Q_{L}^{(+)\dagger}$$
$$g_{8} = \frac{3}{5}(a+b) - b + c$$
$$g_{27} = \frac{3}{5}(a+b)$$

$$a = 1 + \mathcal{O}\left(\frac{1}{N_c^2}\right) \qquad ; \qquad c = \operatorname{Re}C_4 - 16\,L_5\operatorname{Re}C_6(\mu^2)\left[\frac{<\bar{\psi}\psi>}{f_{\pi}^3}\right]^2 + \mathcal{O}\left(\frac{1}{N_c^2}\right) \simeq 0.3 \pm 0.2$$
$$|g_{27}| \simeq 0.29 \qquad \Longrightarrow \qquad b \simeq -0.52 + \mathcal{O}\left(\frac{1}{N_c^2}\right) \qquad \Longrightarrow \qquad g_8 \simeq 1.1 + \mathcal{O}\left(\frac{1}{N_c^2}\right)$$

### Dynamical understanding of the $\Delta I = 1/2$ rule

AP - E. de Rafael, PL B374 (1996) 186

$$\mathcal{L}_{eff} = -\frac{G_F}{\sqrt{2}} F^4 \left[ a \operatorname{Tr}(Q_L^{(-)}L_{\mu}) \operatorname{Tr}(Q_L^{(+)}L^{\mu}) + b \operatorname{Tr}(Q_L^{(-)}L_{\mu}Q_L^{(+)}L^{\mu}) + c \operatorname{Tr}(Q_L^{(-)}Q_L^{(+)}L_{\mu}L^{\mu}) \right]$$



 $a = 1 + \mathcal{O}\left(\frac{1}{N_c^2}\right) \qquad ; \qquad c = \operatorname{Re}C_4 - 16\,L_5\,\operatorname{Re}C_6(\mu^2)\left[\frac{\langle\bar{\psi}\psi\rangle}{f_\pi^3}\right]^2 + \mathcal{O}\left(\frac{1}{N_c^2}\right) \simeq 0.3 \pm 0.2$  $|g_{27}| \simeq 0.29 \qquad \Longrightarrow \qquad b \simeq -0.52 + \mathcal{O}\left(\frac{1}{N_c^2}\right) \qquad \Longrightarrow \qquad g_8 \simeq 1.1 + \mathcal{O}\left(\frac{1}{N_c^2}\right)$ 

b < 0</td>predicted through explicit calculationsAP-E. de Rafael, NP B358 (1991) 311Confirmed through inclusive QCD analysisM. Jamin-AP, NP B425 (1994) 15

Kaon Physics

### Dynamical understanding of the $\Delta I = 1/2$ rule

AP - E. de Rafael, PL B374 (1996) 186

$$\mathcal{L}_{eff} = -\frac{G_F}{\sqrt{2}} F^4 \left[ a \operatorname{Tr}(Q_L^{(-)} L_{\mu}) \operatorname{Tr}(Q_L^{(+)} L^{\mu}) + b \operatorname{Tr}(Q_L^{(-)} L_{\mu} Q_L^{(+)} L^{\mu}) + c \operatorname{Tr}(Q_L^{(-)} Q_L^{(+)} L_{\mu} L^{\mu}) \right]$$



$$g_{L}^{(+)} = \begin{pmatrix} 0 & V_{ud} & V_{us} \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} : \quad Q_{L}^{(-)} = Q_{L}^{(+)\dagger}$$
$$g_{8} = \frac{3}{5}(a+b) - b + c$$
$$g_{27} = \frac{3}{5}(a+b)$$

$$a = 1 + \mathcal{O}\left(\frac{1}{N_c^2}\right) \qquad ; \qquad c = \operatorname{Re}C_4 - 16\,L_5\,\operatorname{Re}C_6(\mu^2)\left[\frac{\langle \bar{\psi}\psi \rangle}{f_\pi^3}\right]^2 + \mathcal{O}\left(\frac{1}{N_c^2}\right) \simeq 0.3 \pm 0.2$$
$$|g_{27}| \simeq 0.29 \qquad \Longrightarrow \qquad b \simeq -0.52 + \mathcal{O}\left(\frac{1}{N_c^2}\right) \qquad \Longrightarrow \qquad g_8 \simeq 1.1 + \mathcal{O}\left(\frac{1}{N_c^2}\right)$$

 b < 0</td>
 predicted through explicit calculations
 AP-E. de Rafael, NP B358 (1991) 311

 Confirmed through inclusive QCD analysis
 M. Jamin-AP, NP B425 (1994) 15

 Confirmed recently by lattice calculations
 Boyle et al, PRL 110 (2013) 15, 152001

 Kaon Physics
 A, Pich - BEACH 2014
 12

## Multi-Scale Problem: Summation of logarithms needed

A large  $log(M_1/M_2)$  compensates a  $1/N_C$  suppression

1 Short-distance:  $\frac{1}{N_c} \log (M_W/\mu)$ 

Bardeen-Buras-Gerard

 $\blacksquare \begin{cases} g_8^{\infty} = 1.13 \pm 0.05_{\mu} \pm 0.08_{L_5} \pm 0.05_{m_s} \\ g_{27}^{\infty} = 0.46 \pm 0.01_{\mu} \end{cases}$ 

Cirigliano et al, Pallante et al

**2** Long-distance  $(\chi PT)$ :  $\frac{1}{N_c} \log (\mu/m_{\pi})$ 

Kambor et al, Pallante et al

$$g_8^{\text{LO}} = 5.0 \implies g_8^{\text{NLO}} = 3.6$$
  
 $g_{27}^{\text{LO}} = 0.285 \implies g_{27}^{\text{NLO}} = 0.286$ 

Cirigliano et al

**3** Isospin Violation:

$$g_{27}^{\rm NLO} = 0.297$$

Cirigliano et al

Kaon Physics

A. Pich - BEACH 2014

13

### Anatomy of $\varepsilon'/\varepsilon$ calculation

$$rac{arepsilon'_\kappa}{arepsilon_\kappa} \sim \left[rac{105 \, {
m MeV}}{m_s(2 \, {
m GeV})}
ight]^2 \left\{B_6^{(1/2)}\left(1-\Omega_{
m eff}
ight) - 0.4 \, B_8^{(3/2)}
ight\}$$

- **1**  $O(p^4)$   $\chi$ PT Loops: Large correction (FSI) Pallante-Pich-Scimemi
- **2**  $O(p^4)$  LECs fixed at  $N_C \to \infty$ : Small correction
- **3** Isospin Breaking  $O\left[\left(m_u m_d\right)p^2, e^2p^2\right]$ : Sizeable corrections

 $\Omega_{
m eff}~=~0.06\pm0.08$  Cirigliano-Ecker-Neufeld-Pich

**4**  $O(p^4)$  LECs [Re( $g_8$ ), Re( $g_{27}$ )] and phase-shifts fitted to data

**5**  $m_s(2 \text{ GeV}) = 110 \pm 20 \text{ MeV}$  (quark condensate)

Kaon Physics

## 4. Rare and Radiative Decays

 $K^0 
ightarrow \gamma \gamma$ 



#### Long-distance dynamics

## 4. Rare and Radiative Decays

 $\textit{K}^{0} \rightarrow \gamma \gamma$ 



Finite loop:

 $\mathrm{Br}_{_{\mathrm{LO}}}=2.0\cdot10^{-6}$ D'Ambrosio-Espriu, Goity

 ${\operatorname{Br}}({\it K_S} 
ightarrow \gamma\gamma) = (2.63 \pm 0.17) \cdot 10^{-6}$ 

Agreement at  $O(p^6)$  (FSI)

$$K_S \to \pi\pi \to \pi^+\pi^- \to \gamma\gamma$$

Kambor-Holstein, Buchalla et al

Long-distance dynamics



#### Well understood

$$\mathcal{K}^{0} \rightarrow \ell^{+}\ell^{-}$$

$$\mathcal{K}_{S} \rightarrow \ell^{+}\ell^{-}$$
Long-distance dynamics  
Finite 2-loop amplitude: Ecker-Pich  
Br( $\mathcal{K}_{S} \rightarrow e^{+}e^{-}$ )<sub>LO</sub> = 2.1 · 10<sup>-14</sup>  
Br( $\mathcal{K}_{S} \rightarrow e^{+}e^{-}$ )<sub>LO</sub> = 5.1 · 10<sup>-12</sup>  
Br( $\mathcal{K}_{S} \rightarrow e^{+}e^{-}$ )<sub>EO</sub> = 5.1 · 10<sup>-9</sup>  
Br( $\mathcal{K}_{S} \rightarrow \mu^{+}\mu^{-}$ )<sub>EXP</sub> < 9 · 10<sup>-9</sup>  
LHCb  
(90% CL)

Kaon Physics

 $K^0 \rightarrow \ell^+ \ell^-$ 



 $K_{\varsigma} \rightarrow \ell^+ \ell^-$ 

Long-distance dynamics

Finite 2-loop amplitude:

Ecker-Pich

(90% CL)

 $Br(K_S \to e^+ e^-)_{LO} = 2.1 \cdot 10^{-14}$ 

 $Br(K_S \to \mu^+ \mu^-)_{r,o} = 5.1 \cdot 10^{-12}$ 

 $\operatorname{Br}(K_S \to e^+ e^-)_{exp} < 9 \cdot 10^{-9}$ 

 $Br(K_S \to \mu^+ \mu^-)_{exp} < 9 \cdot 10^{-9}$ LHCb  $K_{l} \rightarrow \ell^{+} \ell^{-}$ 

 $Br(K_L \to \mu^+ \mu^-) = (6.84 \pm 0.11) \cdot 10^{-9}$  $Br(K_L \to e^+e^-) = (9^{+6}) \cdot 10^{-12}$ 

Saturated by absorptive contrib.



**LD** extracted from  $\pi^0, \eta \to \ell^+ \ell^-$ 

Gomez-Dumm, Pich

Fitted SD contrib. agrees with SM

**Longitudinal Polarization:** 

Ecker-Pich

 $|\mathcal{P}_L| = (2.6 \pm 0.4) \cdot 10^{-3}$ 

 $K \to \pi \gamma \gamma$ 



$$Br(K_L \to \pi^0 \gamma \gamma) = (1.27 \pm 0.03) \cdot 10^{-6}$$



#### Finite 1-loop amplitude $[\mathcal{O}(p^4)]$ :

 ${
m Br}(K_L o \pi^0 \gamma \gamma)_{\scriptscriptstyle 
m LO} = 6.8 \cdot 10^{-7}$ 

Ecker-Pich-de Rafael, Cappiello-D'Ambrosio, Sehgal

#### $\mathcal{O}(p^6)$ unitarity corrections needed

Cohen et al, Cappiello et al, D'Ambrosio-Portolés



$$K 
ightarrow \pi \, \ell^+ \ell^-$$





Br
$$(K^{\pm} \to \pi^{\pm} e^{+} e^{-}) = 3.00 (9) \cdot 10^{-7}$$

$$Br(K^{\pm} \to \pi^{\pm}\mu^{+}\mu^{-}) = 9.62 \ (25) \cdot 10^{-8}$$



Local  $\mathcal{O}(p^4)$  LECs

Ecker-Pich-de Rafael

Electromagn. transition form factor  $\mathcal{O}(p^6)$  corrections D'Ambrosio et al

$$K \to \pi \ell^+ \ell^-$$

$$F^* \cdot \kappa_*$$

Kaon Physics

 $K \to \pi \nu \bar{\nu}$ Wu, c, t u, c, t u, c, t u, c, t $T ~\sim~ F\left(V_{is}^* V_{id}, \frac{m_i^2}{M_{W}^2}\right) ~\left(\bar{\nu}_L \gamma_\mu \nu_L\right) ~\langle \pi | ~\bar{s}_L \gamma^\mu d_L | K \rangle$ Negligible long-distance contribution Br $(K^+ \to \pi^+ \nu \bar{\nu}) = (7.8 \pm 0.8) \cdot 10^{-11} \sim A^4 \left[ \eta^2 + (1.4 - \rho)^2 \right]$ Buras et al Brod et al Br( $K_L \rightarrow \pi^0 \nu \bar{\nu}$ ) = (2.4 ± 0.4) · 10<sup>-11</sup> ~  $A^4 \eta^2$ Direct CP  $\mathcal{A}(K_{I} \rightarrow \pi^{0} \nu \bar{\nu}) \neq 0$ **BNL-E949:** few events!  $\longrightarrow$  Br $(K^+ \rightarrow \pi^+ \nu \bar{\nu}) = (1.73^{+1.15}_{-1.05}) \cdot 10^{-10}$ KEK-E391a:  $Br(K_L \to \pi^0 \nu \bar{\nu}) < 2.6 \cdot 10^{-8} (90\% \text{ CL})$ NA62, K0TO Ongoing Experiments:

Kaon Physics

Kaons continue providing important physics information:

- Interesting interplay of short and long-distances
- Sensitive to heavy mass scales. New Physics?
- Superb probe of flavour dynamics and  ${\cal CP}$
- Excellent testing ground of  $\chi {\rm PT}$  dynamics

Theoretical challenge: precise control of QCD effects Increased sensitivities at ongoing experiments  $(K \rightarrow \pi \nu \bar{\nu})$ 

## Future data could bring interesting surprises

Kaon Physics