



### Measurement of BR(K<sup>+</sup> $\rightarrow \pi^+\pi^-\pi^+(\gamma)$ ) at KLOE



Patrizia de Simone (INFN LNF) on behalf of the KLOE-2 Collaboration



# Da $\Phi$ ne and KLOE

# Da $\Phi$ ne: the frascati $\phi$ factory

- e+e- collider @  $\sqrt{s}$  = 1019.4 MeV
- crossing angle ≈ 25 mrad
- **<u>2.5 fb<sup>-1</sup></u>** integrated @  $\sqrt{s} = M(\phi)$ , yielding 8
- **~ 2.5 x 10<sup>9</sup> K<sub>s</sub>K<sub>L</sub>**
- ~ 3.6 x 10<sup>9</sup> K<sup>+</sup>K<sup>-</sup>

**<u>250 pb<sup>-1</sup></u>** integrated @ Vs =1 GeV for physics in the continuum



most of the infrastructures of the Frascati accelerator complex have been consolidated for physics run with KLOE-2

beam interaction region upgraded

1) larger crossing angle
 2) reduced beam size

- 3) crab-waist configuration
- the goal is to collect 5 fb<sup>-1</sup> in 2 3 years

# kaon production

the  $\phi$ s are produced with  $\sigma(e^+e^- \rightarrow \phi) \approx 3\mu b$  and decay almost at rest ( $p_x \approx 12.5 \text{ MeV/c}$ )

neutral and charged kaons are produced in pairs collinear and monochromatic

$$K_{S}, K^{+} \longleftarrow \phi \longrightarrow K_{L}, K^{-}$$

detection of a K<sup>-</sup>(K<sup>+</sup>) guarantees the presence of a K<sup>+</sup> (K<sup>-</sup>) with known momentum and direction (the same for  $K_S K_L$ )  $\Rightarrow$  <u>tagging</u>

pure kaon beam obtained  $\Rightarrow$  normalization (N<sub>tag</sub>) sample

⇒ allows precision measurements of absolute BRs

 $K^+K^ K_LK_S$  $BR \cong 49\%$  $BR \cong 34\%$  $p_{lab} = 127 \text{ MeV/c}$  $p_{lab} = 110 \text{ MeV/c}$  $\lambda_{\pm} = 95 \text{ cm}$  $\lambda_S = 0.6 \text{ cm}, \lambda_L = 340 \text{ cm}$ 

# the KLOE detector



Be beam pipe (0.5 mm thick), r =10 cm (K<sub>s</sub> fiducial volume)

drift chamber (4 m Ø × 3.3 m), 90% He + 10% IsoB, carbon-fiber structure, 12582 stereo sense wires

electromagnetic calorimeter lead/scintillating fibers, C-shaped end-caps for full coverage → 98% of the solid angle

superconducting coil B = 0.52 T ( $\int$ Bdl = 2 T·m)

loose trigger conditions to insure maximal acceptance for a wide topology of events

### **KLOE detector performance**





 $\sigma_{\rm E}/{\rm E} \cong 5.7\% / \sqrt{{\rm E}({\rm GeV})}$   $\sigma_{\rm t} \cong 57 \text{ ps} / \sqrt{{\rm E}({\rm GeV})} \oplus 100 \text{ ps}$  $\sigma_{\gamma\gamma} \simeq 2 \text{ cm} (\pi^0 \text{ from } {\rm K}_{\rm L} \rightarrow \pi^+\pi^-\pi^0)$ 

 $\sigma_{pt}/p_t \cong 0.4 \% \text{ (tracks with 45°< } \theta < 135°\text{)}$  $\sigma_x^{hit} \cong 150 \ \mu\text{m} \text{ (xy), 2 mm (z)}$  $\sigma_x^{vertex} \sim 3 \ \text{mm}$ 

## the detector upgrades KLOE-2

X two stations of γ-γ taggers, for the detection of e<sup>+</sup> and e<sup>-</sup> <u>High-Energy Taggers (HET)</u>

 $E_e > 400 MeV$  11 m from IP scintillators + PMTs<u>Low-Energy Taggers (LET)</u>  $130 < E_e < 300 MeV$  inside KLOELYSO-crystals + SiPMs

**X** the Inner Tracker is the first cylindrical 3-GEM chamber ever built  $\rightarrow$  increase the acceptance for low p<sub>t</sub> tracks and vertex resolution near IP



**X** CCALT LYSO-crystal calorimeter to increase acceptance for  $\gamma s$  (21°  $\rightarrow$  8°)

**X** QCALT is a sampling calorimeter to instrument the final focusing region

BEACH 2014, Birmingham

P. de Simone, LNF-INFN



### • absolute K<sup>+</sup> -> $\pi^+\pi^-\pi^+(\gamma)$ branching ratio

#### absolute BR(K<sup>+</sup> $\rightarrow \pi^{+}\pi^{-}\pi^{+}(\gamma))$

this measurement completes the KLOE program of precise and inclusive of FSR <u>K<sup>±</sup> dominant BRs</u>

KLOE fit 2008 BR(K<sup>±</sup> $\rightarrow \pi^{\pm}\pi^{-}\pi^{+}) = (5.68 \pm 0.22)\% \Delta BR/BR = 3.8 \times 10^{-2}$ PLB 666 (2008)

- this BR enters in the CUSP analysis to extract the  $\pi\pi$  phase shift, NA48 PLB 633(2006)
- needed to perform a global fit to K<sup>±</sup> BRs
- available measurements dates back to 1972 (no informations on radiation cut-off)

CHIANG (2330 evts) BR(K<sup>±</sup> $\rightarrow \pi^{\pm}\pi^{-}\pi^{+}) = (5.56 \pm 0.20)\% \Delta BR/BR = 3.6 \times 10^{-2}$ PRD 6 (1972)1254

- PDG fit 2012  $BR(K^{\pm} \rightarrow \pi^{\pm} \pi^{-} \pi^{+}) = (5,59 \pm 0.04)\% \quad \Delta BR/BR = 7,1 \times 10^{-3}$
- preliminary KLOE result presented at KAON 2013 and PHIPSI 2013

KLOE<sub>(45054 evts)</sub> BR(K<sup>+</sup> $\rightarrow \pi^{+}\pi^{-}\pi^{+}(\gamma)) = (5.55 \pm 0.05)\%$   $\Delta BR/BR = 9.2 \times 10^{-3}$ 

#### tagging of K<sup>+</sup>K<sup>-</sup> beams (I)

K<sup>±</sup> beams tagged by K<sup>±</sup>  $\rightarrow \pi^{\pm}\pi^{0}$ ,  $\mu^{\pm}\nu$ 

 $\Rightarrow$   $\approx 1.5 \times 10^6 \,\mathrm{K^+K^-} \,\mathrm{evts/pb^{-1}}$ 

two indipendent samples of pure kaons

two-body decays identified as peaks in the momentum spectrum of secondary tracks in the kaon rest frame  $\rightarrow p^*(m_{\pi})$ 

 $\epsilon_{tag} \cong 36 \% \implies \cong 3.4 \times 10^5 \ \mu v \ tags/pb^{-1}$ 

 $\approx 1.1 \times 10^5 \,\pi\pi^0 \,\text{tags/pb}^{-1}$ 



### tagging of K<sup>+</sup>K<sup>-</sup> beams (II)

to remove the impact of the trigger efficiency on the signal side we restrict our normalization sample  $N_{tag}$  to 2-body decays that provide themselves the EMC trigger of the event <u>self-</u> <u>triggering tags</u> (EMC trigger given by 2 trigger sectors over threshold ~ 50 MeV)

- the sample  $N_{tag}(\pi\pi^0)$  is reduced by  $\approx 40\%$
- the sample  $N_{tag}(\mu v)$  is reduced by  $\approx 35\%$

<u>use K<sup>-</sup> to tag and K<sup>+</sup> for signal search</u>  $\rightarrow$  to neglect correction to the BR(K $\rightarrow$ 3 $\pi$ ) due to nuclear interactions of kaons ( $\sigma_{NI}(K^+) \cong \sigma_{NI}(K^-)/10^3$  for  $p_K \cong 100$  MeV/c)

to measure BR's we must take into account a correction due to a bias on the tag selection induced by the signal  $\rightarrow tag bias$ 

evaluated from MC  $\implies$  C<sub>TB</sub> = BR<sub>MC</sub>(with tag) / BR<sub>MC</sub>(without tag)

### Overview

- self-triggering tag on one side
- the virtual path of the signal K<sup>+</sup> is given by the tagging K<sup>-</sup> track backward extrapolated to the I.P.
- in the signal hemisphere we require two reconstructed tracks making a vertex along the K<sup>+</sup> path before the DC sensitive volume ( α<sub>GEO</sub> ≅ 26 % )



- the missing mass distribution from the K<sup>+</sup> and the two pions is used for event counting
- selection efficiency evaluated with MC and corrected using data&MC control samples

### first look at the signal

- NO charge requests
- tracks backward extrapolated 10
   with Distance of Closest Approach, 10
   DCA < 3. cm</li>
- p\*m<sub>π</sub> < 190. MeV/c to remove</li>
   2-body decays
- N(selected tracks) = 2
- Distance of Closest Approach between two selected tracks, DCA<sub>12</sub> < 3. cm</li>
- fiducial volume,  $\rho_{xy}$  < 26. cm

mass window  $\rightarrow$ (10000. < m<sup>2</sup><sub>miss</sub> < 30000.) MeV<sup>2</sup>

S/B ≅ 37.



# background

- mainly due to residual K tracks
- distributions of the opening angle between the two selected tracks  $\rightarrow \cos(\theta_{12})$



# the signal (I)

- NO charge requests
- p\*m<sub>π</sub> < 190. MeV/c</p>
- DCA < 3. cm</p>
- N(selected tracks) = 2
- DCA<sub>12</sub> < 3. cm</p>
- $|\cos(\theta_{12})| < 0.90$
- fiducial volume,  $\rho_{xy}$  < 26. cm

10000. < m<sup>2</sup><sub>miss</sub> < 30000. MeV<sup>2</sup>
 S/B ≅ 88.

two body  $\cong$  0.1% K<sub>13</sub>  $\cong$  0.5% K<sup>+</sup>  $\rightarrow \pi^{+}\pi^{0}\pi^{0} \cong$  0.4%



# the signal (II)

to evaluate the background contribution  $\rightarrow$  fit the missing mass spectrum using MC signal and background shapes



#### $K^+ \rightarrow \pi^- X$ control sample

measurement of the <u>double tracks reconstruction efficiency</u> on <u>data</u> and <u>MC</u>

- neutral clusters (E > 30. MeV) in the signal hemisphere,  $N_{clusters} \le 1$
- p\*m<sub>π</sub> < 130. MeV</p>
- Cos(θ<sub>Kπ</sub>) > 0.85
- DCA<sub>π-</sub> < 7. cm</p>
- → bck contamination = 11.%

then look for two reconstructed tracks that satisfy the <u>complete set of the signal</u> <u>selection cuts</u>  $\rightarrow \varepsilon^{data}{}_{\pi\pi} / \varepsilon^{MC}{}_{\pi\pi}$ 

 $\frac{\underline{\mathsf{K}}^{-} \rightarrow \underline{\mathsf{\mu}} \underline{\mathsf{v}} \operatorname{tag}}{\varepsilon_{sel} = \varepsilon^{\mathcal{MC}}_{K^{+} \rightarrow 3\pi} \otimes (\varepsilon^{data}_{\pi\pi} / \varepsilon^{\mathcal{MC}}_{\pi\pi}) \\
= 0.0842 \pm 0.0003$   $\frac{\underline{\mathsf{K}}^{-} \rightarrow \pi\pi^{0} \operatorname{tag}}{\varepsilon_{sel} = \varepsilon^{\mathcal{MC}}_{K^{+} \rightarrow 3\pi} \otimes (\varepsilon^{data}_{\pi\pi} / \varepsilon^{\mathcal{MC}}_{\pi\pi})$ 

*= 0.0866 ± 0.0005* 



BEACH 2014, Birmingham

# corrections to BR(K<sup>+</sup> $\rightarrow \pi^{+}\pi^{-}\pi^{+}(\gamma))$

$$BR(K^{+} \rightarrow \pi^{+}\pi^{-}\pi^{+}(\gamma)) = \frac{N_{K \rightarrow 3\pi}}{N_{tag}} \times \frac{1}{\varepsilon_{sel}C_{TB}C_{SF}C_{CRV}}$$

- a cosmic-ray veto and a software filter to remove the machine background are implemented → their effects C<sub>CRV</sub> and C<sub>SF</sub> have been evaluated with data acquired without cosmic-ray veto and software filter respectively
- $C_{TB}$  is the correction for the tag bias evaluated with MC

| Table of corrections                 | $K^{\mu 2}$ tags    | $K_{\pi 2}^{-}$ tags  |
|--------------------------------------|---------------------|-----------------------|
| cosmic ray veto correction $C_{CRV}$ | $1.00125\pm0.00002$ | $1.00049 \pm 0.00001$ |
| software filter correction $C_{SF}$  | $1.0144 \pm 0.0013$ | $1.0003 \pm 0.0005$   |
| tag bias correction $C_{TB}$         | $0.839\pm0.001$     | $0.802\pm0.002$       |

### systematic error contributions

| Source of systematic uncertainties                | $K_{\mu 2}^{-} 	ext{ tags } (\%)$ | $K_{\pi 2}^{-} \text{ tags } (\%)$ |
|---------------------------------------------------|-----------------------------------|------------------------------------|
| DCA, DCA <sub>12</sub> , $\cos(\theta_{12})$ cuts | 0.52                              | 0.41                               |
| $\mathrm{p}_{m_\pi}^*  \mathrm{cut}$              | 0.08                              | 0.11                               |
| ${ m m}^2_{miss}~{ m cut}$                        | 0.05                              | 0.14                               |
| fiducial volume                                   | 0.11                              | 0.10                               |
| selection efficiency estimate                     | 0.16                              | 0.16                               |
| tag bias                                          | 0.16                              | 0.32                               |
| $K^{\pm}$ lifetime                                | 0.12                              | 0.12                               |
| Total fractional systematic uncertainty           | 0.60                              | 0.59                               |

**<u>NOTE</u>** the analysis is fully inclusive of radiative decays, only  $\varepsilon_{sel}$  evaluation could be affected by a systematic uncertainty due to the cut  $N_{clusters} \le 1 \Rightarrow$  PHOTOS has been used to evaluate the fraction of decays removed by the cut,  $O(10^{-6})$ 

## absolute BR(K<sup>+</sup> $\rightarrow \pi^{+}\pi^{-}\pi^{+}(\gamma))$ : result

<u>174 pb<sup>-1</sup> of the KLOE data sample</u>

 $BR(K^+ \to \pi^+ \pi^- \pi^+ (\gamma))|_{TagK\mu 2} = (0.05552 \pm 0.00034_{stat} \pm 0.00034_{syst})$ 

 $BR(K^+ \to \pi^+ \pi^- \pi^+ (\gamma))|_{TagK\pi^2} = (0.05587 \pm 0.00053_{stat} \pm 0.00033_{syst})$ 

and combining ->

KLOE

 $BR(K^+ \to \pi^+ \pi \pi^+ (\gamma)) = (\ 0.05565 \pm 0.00031_{stat} \pm 0.00025_{syst}), \quad \Delta BR/BR = 7.2 \times 10^{-3}$ 

submitted to PLB arXiv:1407.2028



a factor ≅5 more precise with respect to the previous measurement\_PRD 6 (1972) 1254

BEACH 2014, Birmingham

# absolute BR(K<sup>+</sup> $\rightarrow \pi^{+}\pi^{-}\pi^{+}(\gamma))$ : fit

#### lifetime and absolute BRs by KLOE

| Parameter                              | BRs in      | BRs out     |        | Corr  | elation | coeffici | ents  |      |
|----------------------------------------|-------------|-------------|--------|-------|---------|----------|-------|------|
| $BR(K_{\mu 2}^{\pm})$                  | 0.6366(17)  | 0.6372(11)  |        |       |         |          |       |      |
| $\mathrm{BR}(K_{\pi 2}^{\pm})$         | 0.2065(9)   | 0.2070(9)   | 0.55   |       |         |          |       |      |
| $BR(\pi^{\pm}\pi^{-}\pi^{+}) \leq$     | 0.05565(39) | 0.05577(39) | >-0.23 | -0.05 |         |          |       |      |
| $BR(K_{e3}^{\pm})$                     | 0.0496(5)   | 0.0498(5)   | 0.42   | -0.15 | 0.06    |          |       |      |
| $BR(K_{\mu3}^{\pm})$                   | 0.0323(4)   | 0.0324(4)   | -0.39  | 0.14  | -0.05   | -0.58    |       |      |
| $\mathrm{BR}(\pi^{\pm}\pi^{0}\pi^{0})$ | 0.01763(25) | 0.01764(25) | -0.13  | 0.05  | -0.02   | 0.04     | -0.04 |      |
| $	au_{K^{\pm}}$ (ns)                   | 12.347(30)  | 12.344(29)  | 0.20   | 0.19  | -0.14   | 0.05     | -0.04 | 0.02 |

- the global fit to  $(1 \Sigma BR_{KLOE})$  taking into account the BRs dependence on  $\tau_{K\pm}$  gives  $\chi^2/ndf = 0.24/1$  (CL = 0.63)
- KLOE provides consistent precision measurements of  $\tau_{\text{K}\pm}$  and of the six largest K^{\pm} branching fractions





#### KLOE produced many interesting results in the recent years and it is still providing precise and competitive measurements in the kaon sector

• new measurement of the absolute BR( $K^+ \rightarrow \pi^+\pi^-\pi^+(\gamma)$ ) completes the KLOE program of precise and fully inclusive of final-state radiation  $K^{\pm}$  dominant BRs

# backup slides

### fiducial volume



#### $K^+ \rightarrow \pi^- X$ control sample



#### K<sup>+</sup> -> $\pi$ <sup>-</sup>X control sample



#### $\sigma$ PtX and $\sigma$ PlX respect to the reconstructed momentum of the $\pi^{+}\pi^{+}$ signal tracks

### statistic and systematic error contributions

| Source of statistical uncertainties                                                                                                                                                    | $K^{-}_{\mu 2}$ tags (%)                                                     | $K_{\pi 2}^{-}$ tags (%)                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| signal counting                                                                                                                                                                        | 0.45                                                                         | 0.70                                                                                |
| selection efficiency                                                                                                                                                                   | 0.38                                                                         | 0.60                                                                                |
| tag bias                                                                                                                                                                               | 0.11                                                                         | 0.18                                                                                |
| software filter                                                                                                                                                                        | 0.13                                                                         | 0.05                                                                                |
| cosmic ray veto                                                                                                                                                                        | 0.002                                                                        | 0.0005                                                                              |
| Total fractional statistical uncertainty                                                                                                                                               | 0.62                                                                         | 0.95                                                                                |
| Source of systematic uncertainties                                                                                                                                                     | $K_{\mu 2}^{-} 	ext{ tags } (\%)$                                            | $K_{\pi 2}^{-} 	ext{ tags } (\%)$                                                   |
|                                                                                                                                                                                        | r ·                                                                          | =                                                                                   |
| DCA, DCA <sub>12</sub> , $\cos(\theta_{12})$ cuts                                                                                                                                      | 0.52                                                                         | 0.41                                                                                |
| DCA, DCA <sub>12</sub> , $\cos(\theta_{12})$ cuts<br>$p_{m_{\pi}}^{*}$ cut                                                                                                             | 0.52<br>0.08                                                                 | 0.41 0.11                                                                           |
| DCA, DCA <sub>12</sub> , $\cos(\theta_{12})$ cuts<br>$p_{m_{\pi}}^{*}$ cut<br>$m_{miss}^{2}$ cut                                                                                       | 0.52<br>0.08<br>0.05                                                         | 0.41<br>0.11<br>0.14                                                                |
| DCA, DCA <sub>12</sub> , $\cos(\theta_{12})$ cuts<br>$p_{m_{\pi}}^{*}$ cut<br>$m_{miss}^{2}$ cut<br>fiducial volume                                                                    | 0.52<br>0.08<br>0.05<br>0.11                                                 | 0.41<br>0.11<br>0.14<br>0.10                                                        |
| DCA, DCA <sub>12</sub> , $\cos(\theta_{12})$ cuts<br>$p_{m_{\pi}}^{*}$ cut<br>$m_{miss}^{2}$ cut<br>fiducial volume<br>selection efficiency estimate                                   | $\begin{array}{c} 0.52 \\ 0.08 \\ 0.05 \\ 0.11 \\ 0.16 \end{array}$          | 0.41<br>0.11<br>0.14<br>0.10<br>0.16                                                |
| DCA, DCA <sub>12</sub> , $\cos(\theta_{12})$ cuts<br>$p_{m_{\pi}}^{*}$ cut<br>$m_{miss}^{2}$ cut<br>fiducial volume<br>selection efficiency estimate<br>tag bias                       | $\begin{array}{c} 0.52 \\ 0.08 \\ 0.05 \\ 0.11 \\ 0.16 \\ 0.16 \end{array}$  | $\begin{array}{c} 0.41 \\ 0.11 \\ 0.14 \\ 0.10 \\ 0.16 \\ 0.32 \end{array}$         |
| DCA, DCA <sub>12</sub> , $\cos(\theta_{12})$ cuts<br>$p_{m_{\pi}}^{*}$ cut<br>$m_{miss}^{2}$ cut<br>fiducial volume<br>selection efficiency estimate<br>tag bias<br>$K^{\pm}$ lifetime | $\begin{array}{c} 0.52\\ 0.08\\ 0.05\\ 0.11\\ 0.16\\ 0.16\\ 0.12\end{array}$ | $\begin{array}{c} 0.41 \\ 0.11 \\ 0.14 \\ 0.10 \\ 0.16 \\ 0.32 \\ 0.12 \end{array}$ |

**Result** (different data samples for BR and  $\epsilon$  corrections measurements)

$$BR(K^+ \to \pi^+ \pi^- \pi^+) = \frac{N_{K \to 3\pi}}{N_{tag}} \times \frac{1}{\varepsilon_{sel} C_{TB} C_f C_{crv}}$$



# $\pi\pi$ phase shift

NA48 observed in the  $\pi^0\pi^0$  invariant mass distribution a cusp-like anomaly at  $M_{00} = 2m_+$ [*PLB 633, 173 (2006)*]  $\rightarrow$  this has been interpreted by N. Cabibbo as the final state charge exchange scattering process  $\pi^+\pi^- \rightarrow \pi^0\pi^0$  in  $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$  decay [*PRL 93, 121801 (2004)*] a best fit to a rescattering model [JHEP 0503, 21 (2005)] provides a determination of  $a_0 - a_2$  the difference between the S-wave  $\pi\pi$  scattering lengths in the isospin I=0 and I=2 states

the main source of uncertainty is the ratio

$$\frac{A_{++-}}{A_{+00}} = \sqrt{\frac{BR(K^+ \to \pi^+ \pi^-)}{BR(K^+ \to \pi^+ \pi^0 \pi^0)}} \sqrt{\frac{\phi_{++-}}{\phi_{+00}}} = \sqrt{R} \sqrt{\frac{\phi_{+--}}{\phi_{+00}}}$$

NA48 evaluates  $R = 3.175 \pm 0.050$  using BR values from PDG 2008 [EPJ C 64 (2009) 589]

using the BR( $\pi^{\pm}\pi^{+}\pi^{-}$ ), BR( $\pi^{\pm}\pi^{0}\pi^{0}$ ) and their correlation (-0.02) from our global fit, we obtain  $R = 3.161 \pm 0.049$ 

BEACH 2014, Birmingham