

Quarkonia and Exotics at LHCb

Philippe Ghez, LAPP on behalf of the LHCb collaboration BEACH 2014, Birmingham

the return of Quarkonia*

BEACH 2014

* CERN Courier July 2013 2

the return of Quarkonia*

H. Woehri-LHCP2013-Barcelona

the return of Quarkonia*

BEACH 2014

* CERN Courier July 2013 2

LHCb : a Quarkonia Detector/I

LHCb : a Quarkonia Detector/2

EPJ C72(2012)2100

JHEP 06(2013)064

BEACH 2014

4

LHCb : a Quarkonia Detector/2

EPJ C72(2012)2100

JHEP 06(2013)064

Impact parameter resolution (high pT tracks) : 20µm

Decay time resolution : 45 fs (for Bs $\rightarrow J/\psi \phi$ and for Bs $\rightarrow Ds \pi$)

 μ ID efficiency : 97% (1-3% π - μ mis-ID)

 J/Ψ (µµ) mass resolution : 8 MeV (B $\rightarrow J/\Psi$ X with constrains) P. Ghez

Outline

Outline

Outline

Prompt Ψ' polarisation/I

EPJ C73(2013)11 arXiv:1403.1339

EPJ C73(2013)11 arXiv:1403.1339

Prompt Ψ' polarisation/l

- Question : polarized ?
 - QCD or xQCD unable to describe production & polarisation

EPJ C73(2013)11 arXiv:1403.1339

Prompt Ψ' polarisation/l

- Question : polarized ?
 - QCD or xQCD unable to describe production & polarisation
- The Ψ '(or Ψ (2S) I⁻⁻) physics case
 - (LHC) production : hard-scatter. / higher mass feed-down / b decay

Prompt Ψ' polarisation/I

- Question : polarized ?
 - QCD or xQCD unable to describe production & polarisation
- The Ψ '(or Ψ (2S) I⁻⁻) physics case
 - (LHC) production : hard-scatter. / higher mass feed-down / b decay
 - $(\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi})$ pol. angles from $\Psi'_{\rightarrow \mu\mu}$ (η, p_T) bins

EPJ C73(2013)11

arXiv:1403.1339

Prompt Ψ' polarisation/I

- Question : polarized ?
 - QCD or xQCD unable to describe production & polarisation
- The Ψ'(or Ψ(2S) I⁻⁻) physics case
 - (LHC) production : hard-scatter. / higher mass feed-down / b decay
 - $(\lambda_{\theta}, \lambda_{\phi}, \lambda_{\theta\phi})$ pol. angles from $\Psi'_{\rightarrow \mu\mu}$ (η, p_T) bins

- use HX AND CS ($\neq \epsilon$)
- $\lambda_{inv} = (\lambda_{\theta} + \lambda_{\phi})/(1-\lambda_{\phi})$ frame independent and (theory) predicted

BEACH 2014

EPJ C73(2013)11

arXiv:1403.1339

Prompt Ψ' polarisation/2

EPJ C73(2013)11 arXiv:1403.1339 7 TeV / 1fb⁻¹

Prompt Ψ' polarisation/2

EPJ C73(2013)11

arXiv:1403.1339

7 TeV / Ifb⁻¹

EPJ C73(2013)11Prompt Ψ' polarisation/2arXiv:1403.13397 TeV / Ifb⁻¹

EPJ C73(2013)11 arXiv:1403.1339 Prompt Ψ' polarisation/2 7 TeV / Ifb⁻¹ $\times 10^3$

P. Ghez

arXiv:1404.0275

Exotics : X(3872) nature/l

arXiv:1404.0275

Exotics : X(3872) nature/l

• Question : what is it ?

« The X(3872) occupies a unique niche in the menagerie (...) as both the first and the most intriguing (...)quantum numbers, mass, and decay patterns make it an unlikely conventional charmonium candidate, and no consensus
explanation has been found. » (Brambilla et al. (2011) EPJ C71(2011)1534)

• Question : what is it ?

« The X(3872) occupies a unique niche in the menagerie (...) as both the first and the most intriguing (...)quantum numbers, mass, and decay patterns make it an unlikely conventional charmonium candidate, and no consensus explanation has been found. » (Brambilla et al. (2011) EPJ C71(2011)1534)

- The X(3872) physics case
 - born in 2003 (Belle PRL 91(2003)262001)
 - $J^{PC}=I^{++}$, possible interpretation : $c\overline{c}u\overline{u}$, D^0D^{0*} , $c\overline{c}g$, ...
 - $R_{\Psi\gamma} = Br(X \rightarrow \Psi'\gamma \text{ (to be confirmed)}) / Br(X \rightarrow J/\Psi\gamma)$ to discriminate
 - this analysis : $B^+ \rightarrow X K^+$ with $X \rightarrow (\Psi' \text{ or } J/\Psi)_{(\rightarrow \mu\mu)} Y$
 - this analysis : extract signal yields from mass fits (ϵ corrections very \neq)

arXiv:1404.0275

7+8 TeV / 3 fb⁻¹

arXiv:1404.0275 7+8 TeV / 3 fb⁻¹

BEACH 2014

9

X→Ψ'γ confirmed

 $R_{\Psi\gamma} = Br(X \rightarrow \Psi'\gamma)/Br(X \rightarrow J/\Psi\gamma) = 2.46 \pm 0.64 \text{ (stat.)} \pm 0.29 \text{ (syst.)}$

DD^{*} molecule ruled out

arXiv:1404.0275

7+8 TeV / 3 fb⁻¹

Exotics : Z(4430) nature/I

PRL 112(2014)222002

arXiv:1404.1903

Exotics : Z(4430) nature/I

• Question : if it exists, what is it ?

PRL 112(2014)222002

arXiv:1404.1903

Exotics : Z(4430) nature/l

• Question : if it exists, what is it ?

- The Z(4430) physics case
 - born in 2007 (Belle PRL100(2008)142001 but not BaBar (2009))
 - $J^P = I^+$ favored / minimal quark content : $c\overline{c}d\overline{u}$!
 - this analysis : $B^0 \rightarrow \Psi'_{\rightarrow \mu\mu} \pi^- K^+$
 - this analysis : **4D** amplitude = $(m^2_{K^+\pi^-}, m^2_{\Psi'\pi^-}, \cos\theta_{\Psi'}, \varphi)$ fit (à la Belle)
 - $B^0 \rightarrow Z^-K^+ + B^0 \rightarrow \Psi'K^{*0}$ (all known $K^{*0} \rightarrow K^+\pi^-$ included)
 - each resonance = BW
 - etc ...

PRL 112(2014)222002

arXiv:1404.1903

PRL 112(2014)222002 arXiv:1404.1903 7+8 TeV / 3 fb⁻¹

PRL 112(2014)222002 arXiv:1404.1903 7+8 TeV / 3 fb⁻¹

BEACH 2014

Exotics : Z(4430) nature/3 PRL 112(2014)222002 arXiv:1404.1903 7+8 TeV / 3 fb⁻¹

Exotics: Z(4430) nature/3 arXiv:1404.1903 7+8 TeV / 3 fb⁻¹

Exotics: Z(4430) nature/3 arXiv:1404.1903 7+8 TeV / 3 fb⁻¹

Exotics: Z(4430) nature/3 arXiv:1404.1903 7+8 TeV / 3 fb⁻¹

confirm Z existence : no $Z : p_{\chi 2} < 2x | 0^{-6} / \text{ with } Z : p_{\chi 2} = | 2\%$ confirm ($\geq | 0\sigma$) $J^{P} = I^{+}$ $M(Z)[MeV] = 4475 \pm 7^{+15}_{-25}$, $\Gamma(Z)[MeV] = | 72 \pm | 3^{+37}_{-34}$ establish : Z is a (4-quarks) resonant state !!!

Xb's production & decays/l

Xb's production & decays/l

- Question : feed-down contributions of (P) to (S) quarkonia ?
 - mandatory to compare exp./theo. for prompt (S) production
 - possible impact on (S) polarisation interpretation

Xb's production & decays/l

- Question : feed-down contributions of (P) to (S) quarkonia ?
 - mandatory to compare exp./theo. for prompt (S) production
 - possible impact on (S) polarisation interpretation

- The χ_b physics case
 - S = I, L = I \rightarrow J = (0, I, 2) \rightarrow ($\chi_{b0}, \chi_{b1}, \chi_{b2}$)
 - (IP, 2P) found and ...
 - $\chi_{b1}(3^{3}P_{1})$: born in 2011(ATLAS PRL 108(2012)152001)
 - first particle discovered @ LHC !
 - radiative decays : $\chi_b(mP) \rightarrow \Upsilon(nS)$ (n,m = 1,2,3) $\rightarrow \Upsilon$'s origin

Xb's production & decays/2

Xb's production & decays/2

• the « method » :

Xb's production & decays/2

• the « method » :

- calorimetric γ : « high » stat. / « low » resol.
- b_0 neglected, b_1 and b_2 fitted simultaneously (assume Δm_{12} and N_{b2}/N_{b1})
- main systematics : fit model and γ reconstruction
- analysis with converted γ (« low » stat. / « high » resol.) coming soon \ldots

LHCb-PAPER-2014-031 X_{b's} production & decays/3

7+8 TeV / 3 fb⁻¹

LHCb-PAPER-2014-031 X_{b's} production & decays/3

7+8 TeV / 3 fb⁻¹

Conclusions

Conclusions

[GeV/c²]

MASS

BACKUP

Charmonium

Bottomonium

Term symbol n ^{2S+1} LJ	I ^G (J ^{PC})	Particle	mass (MeV/c ²) [1] &		
1 ¹ S ₀	0+(0-+)	η _c (1 <i>S</i>)	2 980.3 ±1.2		
1 ³ S ₁	0-(1)	<i>J/ψ</i> (1 <i>S</i>)	3 096.916 ±0.011		
1 ¹ P1	0-(1+-)	<i>h_c</i> (1 <i>P</i>)	3 525.93 ±0.27		
1 ³ P ₀	0+(0++)	<mark>Ⅹ∞</mark> (1 <i>P</i>)	3 414.75 ±0.31		
1 ³ P1	0+(1++)	χ _{c1} (1 <i>P</i>)	3 510.66 ±0.07		
1 ³ P ₂	0+(2++)	χ _{c2} (1 <i>P</i>)	3 556.20 ±0.09		
2 ¹ S ₀	0+(0-+)	η_c (2 <i>S</i>), or η'_c	3 637 ±4		
2 ³ S ₁	0-(1)	ψ(3686)	3 686.09 ±0.04		
1 ¹ D ₂	0+(2-+)	$\eta_{c2}(1D)^{\dagger}$			
1 ³ D ₁	0-(1)	ψ(3770)	3 772.92 ±0.35		
1 ³ D ₂	0-(2)	ψ ₂ (1 <i>D</i>)			
1 ³ D ₃	0-(3)	ψ ₃ (1 <i>D</i>) [†]			
2 ¹ P1	0-(1+-)	h _c (2P) [†]			
2 ³ P0	0+(0++)	χ _{c0} (2 <i>P</i>) [†]			
2 ³ P1	0+(1++)	χ _{c1} (2 <i>P</i>) [†]			
2 ³ P2	0+(2++)	χ _{c2} (2 <i>P</i>) [†]			
? [?] ??	1++†	<i>X</i> (3872)	3 872.2 ±0.8		
? [?] ??	? [?] (1 ⁻ ⁻)	<i>Y</i> (4260)	4 263 ⁺⁸ _9		

Term symbol n ^{2S+1} LJ	I ^G (J ^{PC})	Particle	mass (MeV/c ²)[2]
1 ¹ S ₀	0+(0-+)	η _b (1 <i>S</i>)	9 390.9 ±2.8
1 ³ S ₁	0-(1)	Y (1 <i>S</i>)	9 460.30 ±0.26
1 ¹ P ₁	0-(1+-)	<mark>h</mark> b(1 <i>P</i>)	
1 ³ P ₀	0+(0++)	<u>χ_{b0}(1<i>P</i>)</u>	9 859.44 ±0.52
1 ³ P1	0+(1++)	χ _{b1} (1 <i>P</i>)	9 892.76 ±0.40
1 ³ P ₂	0+(2++)	χ _{b2} (1 <i>P</i>)	9912.21 ±0.40
2 ¹ S ₀	0+(0-+)	η _b (2 <i>S</i>)	
2 ³ S ₁	0-(1)	Y(2 <i>S</i>)	10 023.26 ±0.31
1 ¹ D ₂	0+(2-+)	η _{b2} (1 <i>D</i>)	
1 ³ D ₁	0-(1)	<i>Y</i> (1D)	
1 ³ D ₂	0-(2)	Y ₂ (1 <i>D</i>)	10 161.1 ±1.7
1 ³ D ₃	0-(3)	Y ₃ (1 <i>D</i>)	
2 ¹ P ₁	0-(1+-)	h _b (2P)	
2 ³ P ₀	0+(0++)	χ _{b0} (2 <i>P</i>)	10 232.5 ±0.6
2 ³ P1	0+(1++)	χ _{b1} (2 <i>P</i>)	10 255.46 ±0.55
2 ³ P2	0+(2++)	χ _{b2} (2 <i>P</i>)	10 268.65 ±0.55
3 ³ S1	0-(1)	Y(3 <i>S</i>)	10 355.2 ±0.5
3 ³ PJ	0+(J++)	χ _b (3 <i>P</i>)	10 530 ±5 (stat.) ± 9 (syst.) ^[4]
4 ³ S ₁	0-(1)	Y(4S) or Y(10580)	10 579.4 ±1.2
5 ³ S ₁	0-(1)	<i>Y</i> (10860)	10 865 ±8
6 ³ S ₁	0-(1)	<i>Y</i> (11020)	11 019 ±8

This is Wikipedia !!! BEACH 2014

Intro

Intro

_			global		all muons	LOMuon		LODiMuon
L0	$B^+ \to J_{\lambda}$	$/\psi K^+$	92.5 ± 0	.7% 9	$01.6 \pm 0.7\%$	91.0 ± 0).7%	$63.3\pm2.6\%$
-		line			prescale	rate [Hz]	$\epsilon(B^{-})$	$F \rightarrow J/\psi K^+$)
	HLTI	Hlt1Physics			1	36000	95	$5.1\pm0.6\%$
		Hlt1T:	rackMuon		1	5000	80	$0.5 \pm 1.0\%$
		Hlt1S	ingleMuo	nHighP	Г 1	700	2	$23.9\pm1\%$
		Hlt1D	iMuonHea	vy	1	1200	75	$5.5\pm1.0\%$
		Hlt1D	iMuonLow	Mass	1	1300	71	$1.2\pm1.1\%$
	:			line		prescale	rate [Hz]	$\overline{\epsilon(B^+ \to J/\psi K^+)}$
				Hlt2Phys	sics	-	3200	$96.5\pm0.5\%$
				Hlt2Sing	gleMuon	0.5	483	$34.0 \pm 1.5\%$
				Hlt2Sing	gleMuonHighPT	1	45	$4.7\pm0.5\%$
				Hlt2DiMu	ıonJPsi	0.2	51	$91.0\pm0.7\%$
				Hlt2DiMu	ıonJPsiHighPT	1	113	$59.4 \pm 1.2\%$
		LU11	ЦІТ Э	Hlt2DiMu	lonDetached	1	71	$69.2\pm1.1\%$
				Hlt2DiMu	lonDetachedHeav	y 1	75	$87.6\pm0.8\%$
				Hlt2DiMu	lonDetachedJPsi	1	36	$88.9\pm0.8\%$
				Hlt2DiMu	10nPsi2S	1	4	-
				Hlt2DiMu	10nPsi2SHighPT	1	15	-
				Hlt2DiMu	ionB	1	81	-
				Hlt2TriM	luonDetached	1	2	-
				Hlt2TriM	luonTau	1	1	-
P. Gh	ez			BEA	ACH 2014			19

Intro

Comparison of mass resolutions (with Υ)

6

Intro

Ψ'

Helicity Axis (HX): quarkonium momentum direction Gottfried-Jackson Axis (GJ): direction of one or other beam Collins-Soper Axis (CS): average of the two beam directions Perpendicular Helicity Axis (PX): perpendicular to CS

Ψ

HX frame : for J/ Ψ from B⁺ \rightarrow J/ Ψ K⁺ (J/ Ψ long. polar. in B⁺ rest frame) Ratio : after reweighting for B⁺ and J/ Ψ kinematics remaining \neq : detector response modeling

Ψ

X(3872)

X(3872) quantum numbers determination Phys. Rev. Lett. 110, 222001 (2013)

- Using the 1.0 fb⁻¹ dataset recorded by LHCb in 2011
- $313 \pm 26 \text{ B}^+ \rightarrow \text{K}^+\text{X}(3872) \text{ with } \text{X}(3872) \rightarrow \text{J}/\psi \pi^+\pi^-$.
- 5642 \pm 76 B⁺ \rightarrow K⁺ $\psi(2S)$ with $\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$.
- 5D analysis: all angular correlations used to measure $X(3872) J^{PC}$

X(3872) quantum numbers determination Phys. Rev. Lett. 110, 222001 (2013)

- Two X(3872) J^{PC} configurations are considered: 1⁺⁺ and 2⁻⁺;
- Likelihood-ratio test, to discriminate between the assignments;
- Compare the results to simulated experiments;
- Data favour the 1^{++} over the 2^{-+} hypothesis at 8.4σ ;

This result favours the interpretations of X(3872) as an exotic

Exotic Hadrons at LHCb, ICHEP2014 T. Skwarnicki

11

Z(4430)⁻ in LHCb: 4D model dependent amplitude analysis (a la Belle)

Z(4430)

Z(4430)⁻ amplitude parameterized in different angles derivable from the angles in the K* decay chain

• Amplitude model:

HCb

- Construct decay matrix elements as a sum of quasi-two-body $B^0 \rightarrow \psi' K^{*0}$ and $B^0 \rightarrow Z^-K^+$ components.
- Each resonance represented as Breit-Wigner amplitude ("Isobar model") and J dependent angular terms.
- Allow all known K^{*0}→K⁺π⁻ resonances with J≤3 (higher J states are above the kinematic K^{*} mass limit and suppressed by orbital angular momentum barrier in the B⁰ decay) with masses and widths constrained to the PDG values; fit their complex helicity amplitudes.
- Two different J=0 ("S-wave") parameterizations (Isobar and LASS).
- Study K* model dependence for systematic errors.
- Fit method:
 - Use two different methods of implementing efficiency corrections and of non-B⁰ background parameterization.
 - Perform unbinned maximum likelihood fit of free model parameters to the 4D data.
 - Discriminate between various amplitude models using the likelihood ratio test:
 - Δ(-2InL) is a test statistic
 - generate and fit pseudo-experiment to predict probability density distribution under each amplitude hypothesis
 - Also evaluate goodness-of-fit by calculating a χ^2 value between the data and the fit using adaptive 4D binning.

P. Ghez

Z(4430)

30

P. Ghez

LHCb luminosity projection

