## Beam dynamics and simulation

#### Stewart T Boogert John Adams Institute at Royal Holloway





# Talk introduction

- Research highlights
  - Wakefield measurement at ATF2
    - Helped achieve 65 nm beam size
  - Beam delivery simulation (BDSIM)
    - BDSIM geant 4 based simulation
  - BDSIM CLIC post collision line
    - CERN fellow L. Deacon
- Proposed work for CLIC2
  - Develop model BDSIM model for CLIC
  - Collimator (and other structure wake-fields)
  - 2 beam tuning

# CLIC1 funding

|                            | RHUL                     | CERN                  |
|----------------------------|--------------------------|-----------------------|
| Academic (Grahame Blair)   | 3.6 / <mark>1.8</mark>   | 0/0                   |
| Academic (Stewart Boogert) | 0/3                      | 0/0                   |
| Academic (Andrei Seryi)    | 7.2 / 7.2                | 0/0                   |
| PDRA (Jochem Snuverink)    | 0/0                      | 18 / <mark>21</mark>  |
| EUCARD - ASTeC             | 4.8 / 4.8?               | 0/0                   |
| TOTAL                      | 15.6 / <mark>16.8</mark> | 18 / <mark>21</mark>  |
| Travel                     |                          | 6 <b>/ 5</b> k£       |
| Material                   |                          | 0 / <mark>0</mark> k£ |

# ATF2 optics



Energy scaled Raimondi-Seryi FFS optics

- Focus vertical size 37nm at *interaction point*
  - Local chromaticity correction
- Relies on design dispersion in FF
- Preserve low emittance from ATF ring (12 pm.rad)
- Compact ~ 38 m

# ATF2



- Tuning of ATF2
  - Help develop tuning algorithms at ATF2
  - Strong integration of diagnostics (see wakefield measurements)
  - Pushed ATF2 optics
  - Compton diagnostics essential (Shintake monitor)

# **CBPM : Orbit kick response**



IBIC : Beam Instrumentation at ATF2

(S. T. Boogert for ATF collab.)

#### **CBPM** : Dispersion measurement

- Vary beam energy in ATF damping ring by a small shift in the RF frequency
  - Record response in stripline and CBPM systems
  - Online comparison with optics model (FFS based on dispersion)



## CBPM : Wakefield measurement

- Goal: measure wakefield from cavity BPM
- Using movable setup with 1 or 2 reference cavities
- Looking at downstream orbit change
- Setup was used to compensate wakes from other locations
- Crucial for reaching small beam size



# **CBPM** : Wakefield simulation

- Geometrical wake fields computed numerically with GdfidL (http://www.gdfidl.de) and ACE3P
- Electromagnetic fields calculator in any 3Dstructure
- Finite element method
- All higher modes included (up to cut-off frequency)
- The beam is represented as a line charge traveling along the z-axis with optional offsets in x and y, Gaussian distribution in z
- Good agreement with different methods
- Non-linear for large offsets

19/11/2013



#### CBPM : Wakefield measurement example



- Wakefield kick will change the beam orbit slightly
- Experiment is ideally placed as many high resolution cavity BPMs both upstream and downstream of the setup
- Procedure:
  - Take all upstream cavity BPM readings
  - All BPM readings averaged subtracted
  - Find contribution between those BPM readings and downstream cavity BPM readings
  - Subtract orbit per pulse (by SVD matrix inversion)
  - Remaining correlation with setup movement will give wakefield kick
- Orbit and shape follows simulation well
- Some discrepancy in absolute size compared to simulation (calculation + tracking).

# BDSIM (Geant 4 + particle tracking)

ATF2

- Project of G. Blair
  - Taken over by S. Boogert, J.
    Snuverink and L. Nevay
- Improved
  - Base code
  - Conversion from MAD8, MADX
  - Interfaces to PLACET
  - Geometry description
- Work recently to implement LHC
  - CLIC/ILC significantly easier

IΡ

ATF

## CLIC dump line (L. Deacon)



19/11/2013

SIC : Beam Instrumentation at AFE (5

Boogert for ATF collab.)

#### Future program

- Background studies for CLIC using PLACET/BDSIM
  - Collimator background generation
  - Compton signal backgrounds, emittance measurement system, energy spectrometers, in RTML, linacs and BDS Wakefield simulation
- Collimator wakefields
- Effect of wakes on low emittance transport
- Two beam tuning

# Deliverables

 2013 (December): Complete BDSIM simulation of CLIC collimation 2014 (April): Integrate wakefield simulations for CLIC **BPMs and other structures in PLACET** 2015 (April): Complete BDSIM simulation of CLIC beam delivery and two beam system 2016 (April): Integrate collimator wakefield and other possible wakes, other diagnostic structures 2016 (April): Paper on backgrounds in CLIC 2016 (April): Paper on CLIC tuning, including effects of wakefields.

## New funding request

|                            | RHUL  | CERN  | Total |
|----------------------------|-------|-------|-------|
| Academic (Stewart Boogert) | 6 pm  | 0     | 6 pm  |
| PDRA (Jochem Snuverink)    | 18 pm | 18 pm | 36 pm |
| Travel                     | 3 k£  | 15 k£ | 18 k£ |
| Material                   | 0 k£  | 0 k£  | 0 k£  |