

Particle correlations and collectivity in heavy-ion collisions at CMS

Wei Li (Rice University)

IWoC, September 14-20, 2014

Paradigm of nearly perfect fluidity

Paradigm of nearly perfect fluidity

Understand the initial state and its fluctuations
Extract the QGP's transport coefficients (η/s)

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIN, 10 papers on flow/correlations!

Compact Muon Solenoid (CMS) at the LHC

Large acceptance and wide kinematic coverage!

Collectivity diminishing as system size decreases

Collectivity diminishing as system size decreases

No collectivity in pp and pPb expected

Collectivity diminishing as system size decreases

No collectivity in pp and pPb expected

But what if depositing much more energies

Collectivity diminishing as system size decreases

No collectivity in pp and pPb expected

But what if depositing much more energies
a smaller but hotter QGP?!

The "ridge" tsunami at the LHC

The "ridge" tsunami at the LHC

The "ridge" tsunami at the LHC

Factorization assumption:

$$V_{n\Delta}(p_T^{trig}, p_T^{assoc}) = v_n(p_T^{trig}) \times v_n(p_T^{assoc})$$
$$v_n(p_T^{trig}) = \frac{V_{n\Delta}(p_T^{trig}, p_T^{assoc})}{\sqrt{V_{n\Delta}(p_T^{assoc}, p_T^{assoc})}} \qquad \text{imposed in all flow methods!}$$

Factorization assumption:

$$V_{n\Delta}(p_T^{trig}, p_T^{assoc}) = v_n(p_T^{trig}) \times v_n(p_T^{assoc})$$

$$v_n(p_T^{trig}) = \frac{V_{n\Delta}(p_T^{trig}, p_T^{assoc})}{\sqrt{V_{n\Delta}(p_T^{assoc}, p_T^{assoc})}} \qquad \text{imposed in all flow methods!}$$

Wei Li (Rice)

Hydro. failed

arXiv:1405.3605

proton is mostly spherical in the IP-glasma model

Hydro. failed

arXiv:1405.3605

proton is mostly spherical in the IP-glasma model

Stringy proton caught by nucleus?

PRD 89, 025019 (2014)

Hydro. failed

arXiv:1405.3605

proton is mostly spherical in the IP-glasma model

Stringy proton caught by nucleus?

PRD 89, 025019 (2014)

identical v₃ in pPb and PbPb!

Initial state not understood, esp. subnucleonic structure

Hydro. failed

arXiv:1405.3605

proton is mostly spherical in the IP-glasma model

Stringy proton caught by nucleus?

PRD 89, 025019 (2014)

identical v₃ in pPb and PbPb!

Initial state not understood, esp. subnucleonic structure Or (PRD 87 (2013) 094034, arXiv:1405.7825)

Identified particle correlations at CMS

Clean V⁰ hadron reconstruction!

arXiv:1409.3392

Identified particle correlations at CMS

Low multiplicity

No PID dependent at low N_{trk} from jet correlations

No PID dependent at low N_{trk} from jet correlations

No PID dependent at low N_{trk} from jet correlations

At fixed p_{T:}

- Iow p_T: v₂(h^{+/-}) > v₂(K⁰_s) > v₂(Λ) −− Radial flow!?
- > higher p_T : v_2 (baryon) > v_2 (meson)

PID v_n in pPb vs PbPb

Larger mass splitting in pPb at similar multiplicity
Stronger radial flow for smaller/denser system?

Larger mass splitting in pPb at similar multiplicity
Stronger radial flow for smaller/denser system?

Number of Constituent Quark (NCQ) scaling in AuAu at RHIC

Number of Constituent Quark (NCQ) scaling in AuAu at RHIC

Number of Constituent Quark (NCQ) scaling in AuAu at RHIC

Two- or more particle correlations?

Two- or more particle correlations?

Q-cumulant, PRC 83 (2011) 044913

In hydrodynamics:

 $v_2{2} > v_2{4} \approx v_2{6} \approx v_2{8} \approx v_2{\infty}$

 $v_2{2} > v_2{4} \approx v_2{6} \approx v_2{8}$

(v₂ fluctuations)

CMS PAS HIN-14-006

 $v_{2}{2} > v_{2}{4} \approx v_{2}{6} \approx v_{2}{8} \approx v_{2}{LYZ,\infty}$

(v₂ fluctuations)

CMS PAS HIN-14-006

Direct evidence of collectivity in pPb!

If Gaussian fluctuations,

$$v_2{4} = v_2{6} = \dots = v_2{RP}$$

Why not all zeros in pPb?

If Gaussian fluctuations,

$$v_2{4} = v_2{6} = \dots = v_2{RP}$$

Why not all zeros in pPb?

Non-Gaussianity for small systems due to unitary bound of $\varepsilon_n < 1$

$$p(\varepsilon_n) = 2\alpha\varepsilon_n(1-\varepsilon_n^2)^{\alpha-1}$$

Instead of Bessel-Gaussian PRL 112, 082301 (2014)

systems due to unitary bound of $\varepsilon_n < 1$

$$p(\varepsilon_n) = 2\alpha\varepsilon_n(1-\varepsilon_n^2)^{\alpha-1}$$

Instead of Bessel-Gaussian PRL 112, 082301 (2014)

Radial fluctuations averaged out

 $\xrightarrow{} \mathbf{f}(\mathbf{p}_{\mathsf{T}}, \varphi, \eta)$ $\sim 1 + 2 \sum_{n=1}^{\infty} v_n(p_T, \eta) \cos[n(\phi - \Psi_n)]$

Orientation (event plane) angle depends on particle properties,

 $\Psi_n(p_T, \eta)$

 $\xrightarrow{} \mathbf{f}(\mathbf{p}_{\mathsf{T}}, \varphi, \mathbf{\eta})$ $\sim 1 + 2 \sum_{n=1}^{\infty} v_n(p_T, \eta) \cos[n(\phi - \Psi_n)]$

Orientation (event plane) angle depends on particle properties,

 $\Psi_n(p_T, \eta)$

Radial fluctuations averaged out

Details of initial state imprinted in

 $V_{n\Delta}(p_T^{trig}, p_T^{assoc}, \eta^{trig}, \eta^{assoc})$

Factorization: new insights on initial states

Factorization ratio:

$$r_n = \frac{V_{n\Delta}(p_T^{trig}, p_T^{assoc})}{\sqrt{V_{n\Delta}(p_T^{trig}, p_T^{trig})}\sqrt{V_{n\Delta}(p_T^{assoc}, p_T^{assoc})}} \sim \left\langle \cos[n(\Psi_n(p_T^{trig}) - \Psi_n(p_T^{assoc}))] \right\rangle$$

J. Milosevic's talk for details

Factorization: new insights on initial states

Factorization ratio:

Ideal testing grounds for effects due to initial-state fluctuations!

0-0.2% centrality

Intriguing p_T dependence, consistent with hydro.

Initial state dominated by density fluctuations

Initial state dominated by density fluctuations

Initial state dominated by density fluctuations

Wei Li (Rice)

Longitudinal dynamics

Longitudinal dynamics

"Collectivity" at high p_T

 $\alpha = 2$ for pQCD, radiative

 α = 3 for AdS/CFT

"Collectivity" at high p_T

Summary and Outlook

Surprising collective behavior observed in pPb at the LHC:

- Smaller QGP droplet (v₂{N≥4}, mass ordering, …)?
- Theoretical challenge in understanding the initial state
- What about pp?

Study of collectivity in AA remains an active field:

- Great promise of constraining η /s from ultra-central collisions
- Detailed 3D imaging of initial state from v_n factorization
- "Flow" at high p_T to probe **L** dependence of jet quenching