Conformal Field Theories

Gerhard Mack

work with Martin Lüscher CERN, 31 July 2014

- 1. M. Lüscher, G. Mack, *Global Conformal Invariance in Quantum Field Theory*, Commun. Math. Phys. **41** 203-234 (1975)
- 2. M. Lüscher, G. Mack, The energy momentum tensor of critical quantum field theories in 1+1 dimensions, unpublished (1976)
- 3. M. Lüscher, Analytic Representations of Simple Lie Groups and their Continuation to Contractive Representations of Holomorphic Semigroups DESY 75/51 (1975) PhD thesis

Global Conformal Invariance in Quantum Field Theory

Global Conformal Invariance in Quantum Field Theory

M. Lüscher and G. Mack

Institut für Theoretische Physik der Universität Bern, Bern, Switzerland

Received October 17, 1974

Abstract. Suppose that there is given a Wightman quantum field theory (QFT) whose Euclidean Green functions are invariant under the Euclidean conformal group $\mathfrak{G} \simeq SO_e(5, 1)$. We show that its Hilbert space of physical states carries then a unitary representation of the universal (∞ -sheeted) covering group \mathfrak{G}^* of the Minkowskian conformal group $SO_e(4, 2)/\mathbb{Z}_2$. The Wightman functions can be analytically continued to a domain of holomorphy which has as a real boundary an ∞ -sheeted covering \tilde{M} of Minkowski-space M^4 . It is known that \mathfrak{G}^* can act on this space \tilde{M} and that \tilde{M} admits a globally \mathfrak{G}^* -invariant causal ordering; \tilde{M} is thus the natural space on which a globally \mathfrak{G}^* - invariant local QFT could live. We discuss some of the properties of such a theory, in particular the spectrum of the conformal Hamiltonian $H = \frac{1}{2}(P^0 + K^0)$.

As a tool we use a generalized Hille-Yosida theorem for Lie semigroups. Such a theorem is stated and proven in Appendix C. It enables us to analytically continue contractive representations of a certain maximal subsemigroup $\mathfrak S$ of $\mathfrak S$ to unitary representations of $\mathfrak S^*$.

1. Introduction

Conformal invariant quantum field theory (QFT) is of interest from the point 2 of view of constructive quantum field theory because such theories can be analyzed to a remarkable extent by nonperturbative methods, i.e. without recourse to

The problem:

Finite conformal transformations can take points of Minkowski space to infinity.

The appropriately compactified Minkowski space does not admit a conformal invariant causal structure:

(Finite conformal transformations can take relatively spacelike pairs of points to relatively timelike points)

⇒ bad reputation of conformal symmetry

but infinitesimal conformal transf. are ok

solution: QM admits projective (rather than unitary) representations of symmetry groups, and therefore unitary representations of the universal covering \mathfrak{G}^* of SO(4,2),

$$SO(4,2) = \mathfrak{G}^*/\mathbf{Z}_2 \times \mathbf{Z}$$

 \mathfrak{G}^* can act on an ∞ -sheeted covering \tilde{M} of conformally compactified Minkowski space.

$ilde{M}$ admits an invariant causal ordering

subtlety: The eigenvalues of ${\bf Z}$ do not distinguish superselection sectors (Schroer and Swieca showed 2-dim models) Contrast rotations

Proposition: 1. Assuming conformal invariance of Euklidean Green functions, the Hilbert space of physical states admits a unitary representation of the universal covering \mathfrak{G}^* of the conformal group SO(4,2).

2. The Euklidean N-point Green functions admit analytic continuation to a complex domain with N-tuples of points on the ∞ -sheeted universal covering \tilde{M} of compactified Minkowski space as its boundary.

Mathematical basis: prove and apply a generalized Hille Yosida Theorem.

- 1. Reflection positivity (Osterwalder Schrader positivity) of Euklidean Green functions permits to reconstruct the Hilbert space ${\cal H}$ of physical states and its scalar product from the Euklidean Green functions
- 2. Elements of a maximal subsemigroup \mathfrak{S} of the Euklidean conformal group $\mathfrak{G} \simeq SO(5,1)$ can act on \mathcal{H} as contraction operators.

3. This contractive representation of $\mathfrak S$ can be analytically continued to a unitary representation of $\mathfrak G^*$ acting in $\mathcal H$

Let $SO(4,1)=\mathfrak{U}\subset\mathfrak{G}$, $H=-iJ_{64}$ $\mathfrak{S}^0=\{\Lambda=u_1e^{-H\tau}u_2,\ \tau>0,\ u_i\in\mathfrak{U}\}\subset\mathfrak{G}$ maps the half space $x^4>0$ into itself.

Hille- Yosida theorem

Given a 1-parameter semigroup of operators T_t on $\mathcal{H},\ t\geq 0$ with $||T_t\Psi-\Psi||\mapsto 0$ for $t\mapsto 0$ for all $\Psi\in\mathcal{H}$

Then $T_t = \exp(-Ht)$ with positive selfadjoint generator $H \Rightarrow$

The semigroup can be analytically continued to a 1-parameter group of unitary operators $\exp(-iHs)$.

with a view towards generalization

$$H \in \mathfrak{g}_-, \qquad iH \in i\mathfrak{g}_-$$

Lie group \mathfrak{G} with Lie algebra \mathfrak{g} (Euklidean), automorphism θ of \mathfrak{g} , $\theta^2 = 1$.

$$\mathfrak{g}=\mathfrak{g}_{+}+\mathfrak{g}_{-}$$
 $\theta(X)=\pm X$ for $X\in\mathfrak{g}_{\pm}.$ Consider
$$\mathfrak{g}^{*}=\mathfrak{g}_{+}+i\mathfrak{g}_{-}$$
 Lie algebra of \mathfrak{G}^{*} (Minkowskian) Both contain \mathfrak{U} generated by $\mathfrak{g}_{+}.$ Suppose open convex cone $V\subset\mathfrak{g}_{-}$ V is invariant under $\mathfrak{U},$ (i.e. $uXu^{-1}\in V$) V and \mathfrak{g}_{+} span $\mathfrak{g}.\Rightarrow$ Semigroups $\subset\mathfrak{G}$ $\mathfrak{S}^{0}=\{\Lambda=e^{X_{1}}...e^{X_{k}}u\in\mathfrak{G},k\geq1,X_{i}\in V\}$ $\mathfrak{S}=\mathfrak{S}^{0}\cup\mathfrak{U}$

generalized Hille Yosida theorem

for Lie semigroups

Let T be a representation of \mathfrak{S} by contraction operators on \mathcal{H} (viz. $||T(\Lambda)|| \leq 1$).

Suppose that

$$||T(\Lambda)\Psi - \Psi|| \mapsto 0 \text{ if } \Lambda \mapsto 1$$

 $<\Psi|T(\Lambda)\Phi> = < T(\bar{\Lambda})\Psi|\Phi>, \bar{\Lambda} = \theta(\Lambda^{-1})$

Then T can be analytically continued to a unitary representation of the simply connected Lie group \mathfrak{G}^* with Lie algebra

 $\mathfrak{g}^* = \mathfrak{g}_+ + i\mathfrak{g}_-$. The selfadjoint generators T(X) are positive for $-X \in V$.

conformal Hamiltonian $H = J_{60} = \frac{1}{2}(P^0 + K^0)$ and its conjugates

The energy momentum tensor in 1+1 dimensions is a Lie field assuming dilatation symmetry

The energy momentum temor of critical quantum field theories in 1+1 dimensions.

by

H. Lüscher and G. Hack II. Institut für theoretische Physik, Hamburg

Abstract: We show that the evergy momentum tensor of a scaling invariant quantum field theory in two dimerrand space hime is always a Lie field. Its communishan relations are unique up to two positive real numbers which depend on the dynamics of the model considered

$$x_{\pm} = x^{0} \pm x^{1}$$
, dilatation symmetry $\Rightarrow \theta^{\mu}_{\mu}(x) = 0, \quad \theta_{00} \pm \theta_{01} = \theta_{\pm}(x_{\pm})$

$$[\theta_{+}(x_{+}), \theta_{+}(y_{+})] = N_{+} \frac{i^{3}}{12\pi} \delta'''(x_{+} - y_{+}) \mathbf{1}$$

$$+4i\delta'(x_{+} - y_{+})\theta_{+}(y_{+})$$

$$-2i\delta(x_{+} - y_{+})\theta'_{+}(y_{+})$$

and similarly for θ_-

$$\left[\theta_{+}(x_{+}), \theta_{-}(y_{-})\right] = 0$$

We showed

$$N_{+} \ge 1$$
 if $N_{+} \ne 0$

In case of parity invariance $N_+=N_-\equiv N$. Later notation $N_+=N_-=2c$ central charge

Change of variables: $x_{+} = tg\frac{1}{2}\tau$, $\tau \in (-\pi, +\pi)$

$$T(\tau) = (\cos \frac{1}{2}\tau)^{-4}\theta_{+}(x_{+}(\tau))$$
$$X_{k} = -\frac{1}{8} \int_{-\pi}^{\pi} d\tau e^{-ik\tau} T(\tau)$$

satisfy the Virasoro algebra, known from dual resonance models (k integer).

$$[X_l, X_k] = \frac{N}{24}k(k^2 - 1)\delta_{k+l,0} + (k - l)X_{k+l}$$
$$X_k^+ = X_{-k}, \ X_k|0> = 0 \text{ for } k \le 1$$

The allowed values of c were found a decade later

All vacuum expectation values (Wightman)

$$W(x_1,...,x_n) = <0 |\theta(x_1)...\theta(x_n)|0>$$

can be constructed by splitting θ into positive and negative frequencies and commuting θ^- to the right until it annihilates the vacuum |0>.

Special case $N_{+} = 1$ was constructed:

$$\theta_{+}(x_{+}) = i : \varphi(x_{+}) \frac{\partial}{\partial x_{+}} \varphi(x_{+}) :$$

 $\varphi(x_+)$ anticommuting field obeying CAR

$$\{\varphi(x_+), \varphi(y_+)\} = \delta(x - y)$$

. Derivation: step 1: Show that

$$\theta^{\mu}_{\ \mu}(x) = 0$$

This follows from $\theta^{\mu}_{\ \mu}(x)|0>=0$ by the Reeh Schlieder Theorem. The latter follows from dilatation symmetry by studying the two point function of $\theta_{\mu\nu}$

It follows that $\theta_{\mu\nu}$ has two independent components θ_{\pm} which depend on single variables $x_{\pm}=x^0\pm x^1$

step 2: Let $x=x_+$, $y=y_+$, $\theta=\theta_+$ Study the two-point function of the bilocal operator

$$F(z,y) = [\theta(x), \theta(y)], \qquad z = y - x$$

which is supported at z = 0, and its moments

$$O_k(y) = \frac{(-)^k}{k!} \int dz \ z^k f(z) F(z, y)$$

where $f(z) \equiv 1$ in a neighborhood of z = 0.

Key step: Positivity of

$$< 0|O_k^+(x), O_k(y)]0 > = B_k(x - y - i\epsilon)^{2k-6}$$

implies (according to Gelfand and Shilov vol.1.) that $O_k(y)|0>=0$ and therefore $O_k(y)=0$ for k>3, hence.

$$[\theta(x), \theta(y)] = \sum_{l=0}^{3} \delta^{(l)}(x-y)O_l(y)$$

Exploit antisymmetry $[\theta(x), \theta(y)] = -[\theta(y), \theta(x)]$ and translational invariance to get CR

step 3: Derive inequality $N \ge 1$ on $N \equiv N_+$, assuming $N \ne 0$. : Compute the norm

$$<\Psi|\Psi> = 56N(N-1)(5N+44)$$

of a special vector $|\Psi>$ The vector $|\Psi>$ obeys $X_0|\Psi>$. = $9|\Psi>$ and $X_{-1}|\Psi>$ = 0.

$$|\Psi\rangle = \{8X_9 + 6X_7X_2 + 12X_6X_3 - 8X_2X_5X_2 + 12X_3X_4X_2 - 5X_3X_3X_3\}|0\rangle$$