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Renormalized coupling from the Gradient Flow

Add “extra” (flow) time coordinate t ([t] = −2). Define gauge field Bµ(x , t)

Gµν(x , t) = ∂µBν(x , t)− ∂νBµ(x , t) + [Bµ(x , t),Bν(x , t)]

dBµ(x , t)

dt
= DνGνµ(x , t)

(
∼ −

δSYM[B]

δBµ

)
with initial condition Bµ(x , t = 0) = Aµ(x).

Renormalized couplings

I Define (finite quantity for t > 0):

〈E(t)〉 = −
1

2
Tr〈Gµν(x , t)Gµν(x , t)〉

I t2〈E(t)〉 is dimensionless but depends on scale µ = 1/
√

8t

I Ideal candidate for scale setting: t0, t1,w0, . . .

I Renormalized couplings at scale µ = 1√
8t

t2〈E(t)〉 =
3

16π2
g2
MS

(µ)
[
1 + c1g

2
MS

(µ) +O(g4
MS

)
]
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Renormalized coupling from the Gradient Flow

Infinite volume

g2
GF(µ) =

16π2

3
t2〈E(t)〉

∣∣∣
µ=1/

√
8t

I On the lattice we need a window a�
√

8t � L.

Running coupling: µ = 1/cL

g2
GF(µ) = N−1t2〈E(t)〉

∣∣∣
µ=1/

√
8t

I B.C. important ( 16π2

3
→ N−1): Periodic, SF, Twisted (à la t’Hooft), SF-open,. . .

I Step scaling function

σ(u, s) = g2
GF(µ/s)

∣∣∣
g2
GF(µ)=u

easily computed on the lattice (L/a→ sL/a at fixed a)

σ(u, s) = lim
a/L→0

Σ(u, s, a/L)

I Continuum extrapolation only systematic.
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Outline of the talk

Analysis of cutoff effects
In flow quantities.

Symanzik improvement

Zeuthen flow: No O(a2) cutoff effects.

Observables without O(a2) cutoff effects.

Tree-level cutoff effects

Nothing is improved

Zeuthen flow v1.0
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An urban legend

The symmetric (clover) definition of E(t) produce smaller cutoff effects.
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Figure : [M. Lüscher ’10]

I We all jumped into the clover definition!

I This plot only shows that the Wilson
action (pure gauge), with Wilson flow
and clover observable produce smaller
cutoff effects in

√
8t0/r0.

I But different sources of cutoff effects can
be responsible of this behavior.

I In fact we think that this is an accidental
cancellation.

I Not to be expected in general.
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Anatomy of cutoff effects of flow observables

Tree level cutoff effects as a guide

I Compute t2〈E(t)〉 on the lattice to tree level.

I Compare with continuum ⇒ cutoff effects in the coupling and t0, t1, . . .

Contribution to O(a2) cutoff effects

action : S(c
(a)
i ) =

1

g2
0

∑
x

Tr

(
1− c

(a)
0 rr rr− c

(a)
1 r r rr r r

− c
(a)
2

�� ��
r rr r

r rp p p p − c
(a)
3

��

��pr r rr r
r rp p p ppppppppp

)

flow :
d

dt
Vµ(x , t) = −g2

0

δS(c
(f )
i )

δVµ(x , t)
Vµ(x , t)

obs : E(t) = −
1

2
TrGµν(x , t)Gµν(x , t) = S(c(o))

I i.e. Wilson action (c
(a)
0 = 1, c

(a)
1 = c

(a)
2 = c

(a)
3 = 0).

I i.e. Symanzik flow (c
(f )
0 = 5/3, c

(f )
1 = −1/12, c

(f )
2 = c

(f )
3 = 0).

I Clover observable. Symanzik observable (use c
(o)
0 = 5/3, c

(o)
1 = −1/12).
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Anatomy of tree-level O(a2) cutoff effects

To leading order each choice of action is characterized by a kernel K̂µν

S(c
(a,f ,o)
i ) =

1

2

∫ π/a

−π/a
dp Aµ(−p)Kµν(p; c

(a,f ,o)
i , λ)Aν(p) +O(g)

expanding in powers of a2

Kµν(p; c
(a,f ,o)
i , λ) = K

(cont)
µν (p;λ) + a2Rµν(p; c

(a,f ,o)
i , λ) +O(a4)

Example: Wilson action

K
(cnt)
µν (p;λ) =p2

(
δµν − (1− λ)

pµpν

p2

)
,

R
(W )
µν (p) =−

1

12

[
p4δµν − (1− λ)

1

2
pµpν(p2

µ + p2
ν)

]
.

Master formula

t2〈E(t)〉 = g2
∫ π/a

−π/a
dp Tr

{
K (o) exp(−tK (f ))(K (a))−1 exp(−tK (f ))

}
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Anatomy of tree-level O(a2) cutoff effects

Master formula

t2〈E(t)〉 = g2
∫ π/a

−π/a
dp Tr

{
K (o) exp(−tK (f ))(K (a))−1 exp(−tK (f ))

}
Example action arbitrary dependent on c0, c1

t2〈E(t)〉 =
3g2

16π2

{
1 +

a2

t

[
(

1

4
+ 2c

(o)
1 )J4,−2 + c

(o)
1 J2,0−

−(
1

4
+ 2c

(a)
1 )J4,−2 − c

(a)
1 J2,0 −

− (
1

4
+ 2c

(f )
1 )J4,0 − c

(f )
1 J2,2

]}
With

Ji,j =

∫
p e−2tp2

pipj∫
p e−2tp2

(J2,0 = 2, J4,−2 = 1, J2,2 = 6, J4,0 = 3)
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Conclusions and the clover observable

Important conclusions:

I Observable competes in cutoff effects with the action and the flow.

I Flow produces ∼ 3 times more cutoff effects than either the action or the observable.

Observable Action Flow Total
Clover Wilson Wilson
15 -3 -9 3
Clover Lüscher-Weisz Symanzik
15 1 3 19

One can tune one parameter and cancel tree-level cutoff effects (but no improvement):

I Wilson action, Wilson flow: Use as observable

1

4
Eplaq(t) +

3

4
Ecl(t)

I LW action, Wilson flow: Use as observable

7

12
Eplaq(t) +

5

12
Ecl(t)
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Finite volume analysis

Choose Twisted boundary conditions scheme

I Invariance under translations. Very similar to infinite volume.

I New parameter into the game c =
√

8t/L

J2,0 =

∫
p e−2tp2

p2∫
p e−2tp2

−→ J2,0(c) =

∑
P e−

c2L2

4
P2

P2∑
P e−

c2L2

4
P2
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Finite volume analysis

Choose Twisted boundary conditions scheme

I Invariance under translations. Very similar to infinite volume.

I New parameter into the game c =
√

8t/L

J2,0 =

∫
p e−2tp2

p2∫
p e−2tp2

−→ J2,0(c) =

∑
P e−

c2L2

4
P2

P2∑
P e−

c2L2

4
P2

t2〈E(t)〉 = #
{

1 +

a2

t

[
(

1

4
+ 2c

(o)
1 )J4,−2(c) + c

(o)
1 J2,0(c)−

−(
1

4
+ 2c

(a)
1 )J4,−2(c)− c

(a)
1 J2,0(c)−

− (
1

4
+ 2c

(f )
1 )J4,0(c)− c

(f )
1 J2,2(c)

]}
Improvement requires each coefficient to vanish independently!
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Finite volume analysis: A more general flow

Try a general action:

S(ci ) =
1

g2
0

∑
x

Tr

(
1− c0 rr rr− c1 r r rr r r

− c2

�� ��
r rr r

r rp p p p − c3
��

��pr r rr r
r rp p p ppppppppp

)

In this generalized case

t2〈E(t)〉 = #
{

1 +

a2

t

[
(

1

4
+ 2c

(o)
1 )J4,−2(c) + c

(o)
1 J2,0(c)−

−(
1

4
+ 2c

(a)
1 )J4,−2(c)− c

(a)
1 J2,0(c)−

− (
1

4
+ 2c

(f )
1 − 2c

(f )
2 − 2c

(f )
3 )J4,0(c)− (c

(f )
1 + 2c

(f )
2 + 2c3)J2,2(c)

]}

I Zeuthen flow v1.0: c
(f )
1 = −1/12, c

(f )
2 = 1/24, c

(f )
3 = 0

I Improved action (i.e. LW), cancels an improved observable
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Zeuthen flow v1.0

Test: SU(3) pure gauge step scaling function, with SF boundary conditions. LW action,
improved observable.
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Zeuthen flow v1.0

Test: SU(3) pure gauge step scaling function, with SF boundary conditions. LW action,
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Symanzik improvement program

Look at the flow as a 5d field theory [M. Lüscher, P. Weisz ’11, M. Lüscher ’13]

Sbulk =
∫ t
0 ds

∫
d4xLa

µ(x, t)
{
∂tB

a
µ −DνG

a
µν

}

Sboundary =
∫
d4x 1

4g2
Ga

µνG
a
µν

0

t
Lagrange multiplier

4d space-time

S = Sbulk + Sboundary

I Bulk action: No loops → classical improvement is non-perturbative improvement
I Boundary action: List all (modulo flow equation) possible counterterms

(Jµνρ = DµFνρ)

O1 = Tr {JµνρJµνρ} O4 = Tr {Lµ(0, x)Jνµν}
O2 = Tr {JµµρJννρ} O5 = Tr {Lµ(0, x)Lµ(0, x)}
O3 = Tr {JµµρJµµρ}
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Symanzik improvement program

(Jµνρ = DµFνρ)

O1 = Tr {JµνρJµνρ} O4 = Tr {Lµ(0, x)Jνµν}
O2 = Tr {JµµρJννρ} O5 = Tr {Lµ(0, x)Lµ(0, x)}
O3 = Tr {JµµρJµµρ}

Write a lattice action general enough to expand all boundary counterterms

Sboundary = S(c
(a)
i )

Other boundary couterterms implemented via a change in the initial condition

Vµ(t, x)
∣∣∣
t=0

= Uµ(x) exp(a2c4(∂S))

Improvement conditions:

I Classical improvement of the flow equation.

I Classical improvement of observables for t > 0

I c
(a)
i Determined by requiring an observables at t = 0 to be improved (i.e. LW action).

I c4 = 0 to tree level.
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Classical a-expansion of gradient flow observables

Gradient flow: ultraviolet modes are exponentially damped

⇒ usual quantum field theory complications are eliminated!

⇒ no power divergences, no mixing.

⇒ non-perturbative O(an) improvement is simply achieved by classical improvement!

Observables

Study

E(t, x) = −
1

2
tr{Gµν(x , t)Gµν(x , t)},

or, separately, colour magnetic and electric components:

Emag (t, x) = −
1

2
tr{Gkl (x , t)Gkl (x , t)}, Eel (t, x) = −

1

2
tr{G0k (x , t)G0k (x , t)}.

On the lattice these are obtained from small Wilson loops (plaquettes, rectangles,...)
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Classical a-expansion of gradient flow observables

Expansion of link variables:

Smooth underlying continuum gauge field Bµ(x) (t-dependence suppressed), link variables
are induced:

Vµ(x) = P exp

{
a

∫ 1

0
dλBµ (x + (1− λ)aµ̂)

}
= 1l + a

∫ 1

0
dλ Bµ (x + (1− λ)aµ̂)

+ a2
∫ 1

0
dλ1

∫ λ1

0
dλ2 Bµ (x + (1− λ1)aµ̂)Bµ (x + (1− λ2)aµ̂) + . . .

= 1l + aBµ(x) + a2 1

2

(
∂µBµ(x) + B2

µ(x)
)

+
1

6
a3
(
∂2
µBµ(x) + 2Bµ(x)∂µBµ(x) + (∂µBµ(x))Bµ(x) + B3

µ(x)
)

+ . . .

Note: gauge transformations in the continuum and on the lattice are compatible:

Bµ(x)→ g(x)Bµ(x)g(x)−1 + g(x)∂µg(x)−1 ⇔ Vµ(x)→ g(x)Vµ(x)g(x + aµ̂)−1
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Expansion of small Wilson loops (plaquettes, rectangles etc.)

Plaquette fields

Plaquette fields P,Q,R,S appearing in the clover leaf around x :

Pµν(x) = Vµ(x)Vν(x + aµ̂)Vµ(x + aν̂)†Vν(x)†

Qµν(x) = Vν(x − aν̂)†Vµ(x − aν̂)Vν(x + aµ̂− aν̂)Vµ(x)†

Rµν(x) = Vµ(x − aµ̂)†Vν(x − aµ̂− aν̂)†Vµ(x − aµ̂− aν̂)Vν(x − aν̂)

Sµν(x) = Vν(x)Vµ(x + aµ̂+ aν̂)†Vν(x − aµ̂)†Vµ(x − aµ̂)

Expansion of the plaquette field

Using the gauge fixing tricks by Lüscher & Weisz ’85 one obtains relatively quickly:

Pµν(x) = 1l + a2Gµν(x) + a3 1

2
(Dµ + Dν)Gµν(x)

+ a4 1

6

{(
D2
µ +

3

2
DνDµ + D2

ν

)
Gµν(x) + 3G2

µν(x)

}
+ O(a5)

Dµ = ∂µ + [Bµ, ·], [Dµ,Dν ] = [Gµν , ·]

similar expansions are obtained for Qµν ,Rµν , Sµν ; easily generalisable to rectangles.
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Improved observables E (x , t)

Action densities

I start from the tree-level improved action Lüscher-Weisz action SLW(V ) and define

g2
0SLW(V ) = a4

∑
x

E(x , t)

I Note: the density is not unique (can be used to eliminate total derivative terms)

I Similar for electric or magnetic components only: restrict to the corresponding parts of
the action

alternative: linear combinations

Besides plaquette definition E(x , t)|pl (from Wilson action density), consider the clover
definition

E(x , t)|cl = −
1

2
tr{G cl

µν(x , t)G cl
µν(x , t)}

From the classical a-expansion find

4

3
E(x , t)|pl −

1

3
E(x , t)cl

is O(a2) improved! (also separately for magnetic/electric components)
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Translation invariance & total derivative terms

Potential problems:

So far we assumed:

I Observable E(t, x) is only used in 1-point function

I infinite volume or finite volume with (twisted) periodic boundary conditions

⇒ total derivative terms can be neglected!

Open or SF boundary conditions break translation invariance in the Euclidean time direction;
spatial directions remain periodic:

I total derivatives contribute extra terms at all orders of a:

a(∂µ + ∂ν)tr{G2
µν}, a2(∂2

µ, ∂
2
ν , ∂µ∂ν)tr{G2

µν}, (1)

I odd powers of a are total derivative terms only;

I The clover definition eliminates the O(a), but not the O(a2) total derivatives; in
particular

4

3
Eel (x , t)|pl −

1

3
Eel (x , t)|cl = −

1

2
tr{G2

0k}+
1

4
a2∂2

0 tr{G2
0k}+ O(a3)

I We have found O(a2) improved combinations involving rectangles, however, cancelling
O(a3) still requires further efforts.
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Proposed solution for running couplings

Use only magnetic components:

For the running coupling in finite volume with open or SF boundary conditions use

〈Emag (x , t)〉|x0=T/2,c=
√

8t/L = N (c, a/L,T/L)ḡ2
GF (L) (2)

I total derivatives in spatial directions can still be omitted; in particular

4

3
Emag (x , t)|pl −

1

3
Emag (x , t)|cl = −

1

2
trG2

kl (x , t) + O(a4)

I Statistical errors do not seem to increase compared to definition including all
components; the quenched scaling test was done with magnetic components only!

I The influence of the SF boundary counterterm is reduced significantly!
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Expansion of the gradient flow equation

Gradient flow equation:(
a2∂tVµ(x , t)

)
Vµ(x , t)−1 = −∂x,µ

[
g2

0Slat(V )
]

Under gauge transformations both sides transform in the adjoint representation, e.g.(
a2∂tVµ(x , t)

)
Vµ(x , t)−1 → g(x)

(
a2∂tVµ(x , t)

)
Vµ(x , t)−1g(x)−1

Straightforward expansion yields

(
a2∂tVµ

)
V−1
µ = a3∂tBµ +

1

2
a4Dµ∂tBµ +

1

6
D2
µ∂tBµ + O(a6)

For a lattice action parameterized by c1, c2, the RHS gives:

−∂x,µ
[
g2

0Slat(V )
]

=
3∑
ν=0

{
a3DνGνµ +

1

2
a4DµDνGνµ

+
1

12
a5
[
(1 + 12(c1 − c2))

(
2DνD

2
µ + D3

ν

)
− 12(c1 − c2)D2

µDν

+ 12c2

3∑
ρ=0

(
3D2

ρDν − 4DρDνDρ + 2DνD
2
ρ

)]
Gνµ

}
+ O(a6)
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Expansion of the gradient flow equation

Observations

I When iteratively solving this equation the O(a) term always cancels

∂tBµ(x , t) =
3∑
ν=0

DνGνµ(x , t) + O(a2)

However, odd powers of a do not cancel in general!

I No choice of c1, c2 cancels the O(a2) terms!

I However, the Symanzik/LW flow (c1 = −1/12, c2 = 0), is “almost” O(a2) improved

∂tBµ =
3∑
ν=0

{
DνGνµ(x , t)−

1

12
a2D2

µDνGνµ + O(a3)

}
I This suggests to define an O(a2) improved flow equation by setting

(
a2∂tVµ(x , t)

)
Vµ(x , t)−1 = −

(
1 +

1

12
a2∇∗µ∇µ

)
∂x,µ

[
g2

0SLW(V )
]

a∇µF (x) = Vµ(x , t)F (x + aµ̂)Vµ(x , t)† − F (x), ...
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Expansion of the gradient flow equation

Odd powers of a

The expansion of the LHS of the flow equation can be obtained to all orders:

1

a
(∂tVµ(x , t))Vµ(x , t)−1 = ∂tBµ(x , t) +

∞∑
n=1

1

(n + 1)!
(aDµ)n∂tBµ(x , t)

I There is an asymmetry in the treatment of the end points of the link, x + aµ̂ and x!

⇒ expand covariantly about the midpoint x̃ = x + 1
2
aµ̂ of the link:

1

a
Ωµ
(
a2∂tVµ(x , t)

)
Vµ(x , t)−1Ω†µ = ∂tBµ(x̃ , t) +

∞∑
n=1

1

(2n + 1)!

( a
2
Dµ
)2n

∂tBµ(x̃ , t)

Here, Ωµ(x , t) is the “half link variable” from x̃ to x

⇒ all odd powers of a cancel!

I Expect the same to happen on the RHS, so odd powers are completely eliminated!

⇒ However, the midpoint x̃ is not a point on the lattice, have to live with the
asymmetry!(?)
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Expansion of the gradient flow equation

Absence of O(a3) in the improved flow equation

Pushing the expansion of the improved flow equation (around x) to the next order it turns
out that the O(a3) correction is given by:

1

24
a3D3

µ

(
3∑
ν=0

DνGνµ − ∂tBµ

)

so that, after recursive use of the flow equation one gets:

∂tBµ(x , t) =
3∑
ν=0

DνGνµ(x , t) + O(a4)

Some remarks

I Note: expect the explict derivative to introduce odd powers of a, starting at O(a5).

I In infinite volume or with (twisted) periodic b.c.’s this solution is ready to be used!

I With open or SF b.c.’s need to discuss how to treat the derivative at the physical
boundaries; from Martin’s orbifold construction (Lüscher ’14) expect e.g. that the
force term for the SF satisfies Neumann conditions.
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Conclusions and Outlook

We have applied the Symanzik procedure to the pure gauge theory with the gradient flow.

I The classical nature of the gradient flow equation allows to completely eliminate O(a2)
effects originating from the observables at t > 0 and from the gradient flow equation

I Remaining cutoff effects originate from the 4D action and a couple of 4D boundary
counterterms

I Some technical details at open or SF boundaries still need to be worked out.

I Need to repeat the quenched scaling test using the improved flow equation.

I The generalization to include the fermion flow should be straightforward.
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A personal note to Martin Lüscher by Stefan Sint

As your former Ph.D. student, I would like to express my gratitude

I for accepting me as a student, despite the fact that this created the highly anomalous
situation of having simultaneously two Ph.D. students. It is hard to imagine better
guidance for a student!

I for your generous advice and many discussions over the years, and for leading by
example.

I for taking the long term view. In an increasingly breathless world I often find it helpful
to ask myself “What would Martin say?”

I for your scientific contributions which set a very high standard. I am sure that many
will pass the test of time and be standard references for decades to come!

Thank you, Martin!
Wishes for the future:

I Many more healthy and productive years!

I Enjoy your swiss-made new house and the alps!

I Visit us occasionally!
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