
Multi-threading capabilities
in Geant4 Version 10.0
A. Dotti for Geant4 Collaboration
Technical Forum 10 Dec 2013

Introduction

•Event level parallelism via multi-threading (POSIX based)
•Built on top of experience of G4MT prototypes
•Main design driving goal: minimize user-code changes

•Integrated into Version 10.0 codebase

2

G4MT 9.4. (2011) G4MT 9.5
(2012)

G4
10.0.beta

G4 10.0
(Dec. 2013)

G4 10
series

(2014+)

•  Proof of principle!
•  Identify objects to

be shared!
•  First testing!

•  MT code
integrated into
G4!

•  API re-design!
•  Example migration!
•  Further testing!
•  First optimizations!

•  Public release!
•  All functionalities

ported to MT!

•  Further
Refinements!

•  Focus on further
performance
improvements!

Geant4 Version 10.0: how to use

•Multi-threading activated at configuration step via cmake
option
•-DGEANT4_BUILD_MULTITHREADED=ON (default OFF)

•Code changes:
1.Instantiate G4MTRunManager (or user-derived) instead of G4RunManager
2.Split detector construction in two:
- Construct() method : geometry, shared among threads
- ConstructSDandField() method (new) : SensitiveDetector and B-Field, thread-

local
3.Even if user-actions are thread-local, user should verify thread safety
4.Complex experimental framework may need additional code changes

•Sequential application can run without changes with MT-
enabled Geant4 build

3

Multi-threading master/worker model

4

24

Geometry and
Physics

configuration

0 1 2 3 4 N

Per-thread
Init

Per-thread
Init

Per-thread
Init

5 …

Event
Loop

Event
Loop

Event
Loop

End Local
Run

End Local
Run

End Local
Run

Merge in Global Run

Per-event seeds pre-
prepared in a “queue”

Threads compete for next
event to be processes (new
in ref-08)

Command line scoring and
G4tools automatically merge
results from threads

Thread-safety in Version 10.0

•Design: lock-free code during event-loop
•Thread-safety implemented via Thread Local Storage
•“Split-class” mechanism: reduce memory consumption

•Read-only part of most memory consuming objects shared between
thread

•Geometry, Physics Tables
•Rest is thread-private

5

GeometryObject

- shapeSize
- shapePosition
- sensitiveDetector

GeometryObject

- shapeSize
- shapePosition
- TLS reference

SplitClass Thread1
- sensitiveDetector

SplitClass Thread2
- sensitiveDetector

SplitClass Thread3
- sensitiveDetector

Results

•Fully reproducible: given an event and its initial seed the RNG history
is independent of the number of threads and order in which these are
simulated

•Corollary: given the seeds, sequential and MT builds are equivalent

•MT functionality introduce minimal overhead in single thread (~1%)
•Very good linear scalability up to very large number of threads
O(100)
•Good memory reduction: only 30-50MB/thread (depends on
application, these are for CMS geometry, FTFP_BERT physics, but no SD)
•Hyper-threading adding additional +20% throughput
•Working out-of-the-box with success on different architectures x86, ARM,
MIC, Atom

6

Results

7

Number of threads

M
em

or
y

us
ag

e
(M

B)

Baseline 200MB
Additional 40MB/thread

61 Physical cores

12 Physical cores

N
B: not final release

Comparing to sequential

8

1=Sequential

1 thread =>
Overhead for MT
Very small CPU penalty
~1%

10 threads =>
50% memory w.r.t.
10 sequential instances

5%

1=Sequential

Courtesy of S. Y. Jun (FNAL)

G4 V10.0

Conclusions

•Multi-threading for event-level parallelism in Geant4:
• Feasibility studies and prototyping has been successfully concluded in 2012
• In 2013 Geant4 code has been:

• Made thread-safe
• Extended to allow event-level parallelism
• API improvements to simplify as much as possible usage from users

• For 2014 and beyond:
• CPU/Memory improvements
• Improve support for external parallelism frameworks (first prototypes available for TBB, MPI)

•Very good results obtained:

• Same physics results as for sequential
• Good linearity and memory reduction
• Working on different architectures

•Documentation has been updated:
• Application Developer’s guide : How to migrate to MT
• Toolkit Developer’s guide : Internals of MT for G4 developers (but can be useful for users too)
• Twiki: https://twiki.cern.ch/twiki/bin/view/Geant4/MultiThreadingTaskForce

9

https://twiki.cern.ch/twiki/bin/view/Geant4/MultiThreadingTaskForce
https://twiki.cern.ch/twiki/bin/view/Geant4/MultiThreadingTaskForce

