Multi-threading capabilities

in Geant4 Version 10.

A. Dottl for Geant4 Collabo

Technical Forum [0

Dec 20

ration

3

NNNNNNNN

Introduction

1 Ay

Dl AN

* Event level parallelism via multi-threading (POSIX based)
* Bullt on top of experience of G4MT prototypes
* Main design driving goal: minimize user-code changes

* Integrated into Version 0.0 codebase

e Public release
e MT code e All functionalities

integrated into borted to MT

G4 10
G4MT 9.5 G4 G4 10.0 .
SRbAI S (@UT) > = 5700 10.0.beta (Dec. 2013) 20142)

Proof of principle * APl re-design e Further
* |dentify objects to * Example migration Refinements

be shared * Further testing * Focus on further
* First testing * First optimizations performance

Improvements

Geant4 Version 10.0: how to use

e An

* Multi-threading activated at configuration step via cmake
option

o -DGEANT4_BUILD_MULTITHREADED=0ON (default OFF)
* Code changes:

| .Instantiate G4MTRunManager (or user-derived) instead of G4RunManager

2.5plit detector construction in two:
- Construct() method : geometry, shared among threads
- ConstructSDandField() method (new) : SensitiveDetector and B-Field, thread-
local
3.Even if user-actions are thread-local, user should verify thread safety
4.Complex experimental framework may need additional code changes

* Sequential application can run without changes with M-
enabled Geant4 bulld

Multi-threading master/worker model

Geometry and

Per-thread
Inlt

End Local
Run

Physics
configuration

b b

Per-thread
Init

Event
Loop

End Local
Run

Merge in Global Run

Per-thread
[l

Event
Loop

End Local
Run

Per-event seeds pre-
prepared in a “queue”

Threads compete for next
event to be processes (new
in ref-08)

Command line scoring and
G4tools automatically merge
results from threads

Thread-safety in Version 10.0

e An

P [N o\
* Design: lock-free code during event-loop

* Thread-safety implemented via Thread Local Storage

* “Split-class” mechanism: reduce memory consumption
e Read-only part of most memory consuming objects shared between
thread
* Geometry, Physics Tables
* Rest Is thread-private

GeometryObject

- shapeSize
- shapePosition
- TLS reference

SplitClass Thread?2 SplitClass Thread3
- sensitiveDetector - sensitiveDetector

SplitClass Thread1
- sensitiveDetector

Results

e An

* Fully reproducible: given an event and its initial seed the RNG history
s iIndependent of the number of threads and order in which these are
simulated

e Corollary: given the seeds, sequential and MT builds are equivalent

*MT functionality introduce minimal overhead in single thread (~1%)
*Very good linear scalability up to very large number of threads
O(100)

* Good memory reduction: only 30-50MB/thread (depends on
application, these are for CMS geometry, FTFP_BERT physics, but no SD)

* Hyper-threading adding additional +20% throughput

* Working out-of-the-box with success on different architectures x86, ARM,
MIC, Atom

Results

5 10 15 20 25
Number Threads

Throughput S ! !
600 l 9 p. a = 38.01+0.03456
4000 | b =211.4+2013
500 chi2/ndof = 17.5(1697/97)
3500 |
% 400 2 3000
k= S
% 300! § 2500 |
;C'; % 2000 |
u>.1 200+ s
1500 |- Baseline 200MB Z
100 | - Additional 40MB/thread 9V
o—e Intel Xeon Phi 1000 5
1 |} 1 A | O
0 50 100 150 200 500 j)
Number Threads 0 1 : : :)
0 20 40 Nuffber of tBPeads 100 120 Q-
~
(D
200 Tlllroughputﬁ Thlroughplut is
oy
700/ 50| o
600
= 2 40r
2 300 “ £
= 400 | £ 30|
g 12 Physical cores g
c 300 c
% g 20f
200}
10 E
100+ o—o Intel Xeon X5650 | o—e Cortex Al5
0 0

1 2 3 a
Number Threads

Comparing to sequential

Ratio of <CPU Time>/Event/Core

A
—

1.08
1 06
1.04
102
1

0 98
0 96
0.94
0 92
0.9

Speedup Efficiency - 50 GeV T
: IG4..\/.1..O.,0...._;
;_.1=Sequentlal ...
f_....A
| thread =>

Overhead for MT
Very small CPU penalty
~ 1%

Courtesy of S.Y. Jun (FNAL)

(Mem(MT)/Ncore)/Mem(SEQUENTIAL)

|0 threads =>
50% memory wirt.
|0 sequential instances

N Care

Conclusions

e Multi-threading for event-level parallelism in Geant4:

e Feasibility studies and prototyping has been successfully concluded in 2012

* In 2013 Geant4 code has been:
* Made thread-safe
* Extended to allow event-level parallelism
* APl improvements to simplify as much as possible usage from users
e For 2014 and beyond:
e CPU/Memory improvements
* Improve support for external parallelism frameworks (first prototypes available for TBB, MPI)

eVery good results obtained:

e Same physics results as for sequential
® Good linearity and memory reduction
® Working on different architectures

e Documentation has been updated:
e Application Developer's guide : How to migrate to MT

 Toolkit Developer’s guide : Internals of MT for G4 developers (but can be useful for users too)
o Twiki: httpsi//twiki.cern.ch/twiki/bin/view/Geant4/Multi Threading TaskForce

https://twiki.cern.ch/twiki/bin/view/Geant4/MultiThreadingTaskForce
https://twiki.cern.ch/twiki/bin/view/Geant4/MultiThreadingTaskForce

