Multi-threading capabilities in Geant4 Version 10.0

A. Dotti for Geant4 Collaboration Technical Forum 10 Dec 2013

Introduction

- Event level parallelism via multi-threading (POSIX based)
- Built on top of experience of G4MT prototypes
- Main design driving goal: minimize user-code changes
- Integrated into Version 10.0 codebase
 - MT code integrated into
 G4

- Public release
- All functionalities ported to MT

- Proof of principle
- Identify objects to be shared
- First testing

- API re-design
- Example migration
- Further testing
- First optimizations

- Further Refinements
- Focus on further performance improvements

Geant4 Version 10.0: how to use

- Multi-threading activated at configuration step via cmake option
 - •-DGEANT4_BUILD_MULTITHREADED=ON (default OFF)
- Code changes:
 - 1.Instantiate G4MTRunManager (or user-derived) instead of G4RunManager 2.Split detector construction in two:
 - Construct() method : geometry, shared among threads
 - ConstructSDandField() method (new) : SensitiveDetector and B-Field, thread-local
 - 3. Even if user-actions are thread-local, user should verify thread safety
 - 4. Complex experimental framework may need additional code changes
- Sequential application can run without changes with MTenabled Geant4 build

Multi-threading master/worker model

Thread-safety in Version 10.0

- Design: lock-free code during event-loop
- Thread-safety implemented via Thread Local Storage
- "Split-class" mechanism: reduce memory consumption
 - Read-only part of most memory consuming objects shared between thread
 - Geometry, Physics Tables

Results

- Fully reproducible: given an event and its initial seed the RNG history is independent of the number of threads and order in which these are simulated
 - Corollary: given the seeds, sequential and MT builds are equivalent
- •MT functionality introduce **minimal overhead** in single thread (~1%)
- Very good **linear scalability** up to very large number of threads O(100)
- Good **memory reduction**: only 30-50MB/thread (depends on application, these are for CMS geometry, FTFP_BERT physics, but no SD)
- Hyper-threading adding additional +20% throughput
- Working out-of-the-box with success on different architectures x86, ARM, MIC, Atom

Results

SLAC

Comparing to sequential

Courtesy of S.Y. Jun (FNAL)

Conclusions

- Multi-threading for event-level parallelism in Geant4:
 - Feasibility studies and prototyping has been successfully concluded in 2012
 - In 2013 Geant4 code has been:
 - Made thread-safe
 - Extended to allow event-level parallelism
 - API improvements to simplify as much as possible usage from users
 - For 2014 and beyond:
 - CPU/Memory improvements
 - Improve support for external parallelism frameworks (first prototypes available for TBB, MPI)

•Very good results obtained:

- Same physics results as for sequential
- Good linearity and memory reduction
- Working on different architectures
- Documentation has been updated:
 - Application Developer's guide: How to migrate to MT
 - Toolkit Developer's guide: Internals of MT for G4 developers (but can be useful for users too)
 - Twiki: https://twiki.cern.ch/twiki/bin/view/Geant4/MultiThreadingTaskForce